

Microsoft Certified Azure Data
Fundamentals (Exam DP-900)
Certification Guide

The comprehensive guide to passing the DP-900 exam on your
first attempt

Marcelo Leite

BIRMINGHAM—MUMBAI

Microsoft Certified Azure Data Fundamentals
(Exam DP-900) Certification Guide
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Reshma Raman
Publishing Product Manager: Birjees Patel
Content Development Editor: Shreya Moharir
Technical Editor: Sweety Pagaria
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Joshua Misquitta
Marketing Coordinators: Shifa Ansari

First published: November 2022
Production reference: 1281022

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-063-3
www.packt.com

http://www.packt.com

For my wife, Rayane, and my parents, Diva and Marco, who have always supported me in every
decision in my career.

Contributors

About the author
Marcelo Leite is a data and artificial intelligence specialist at Microsoft. He got the DP-900 in October
2020 and holds the advanced titles of Azure Data Engineer and Azure AI Engineer. He graduated in
technology with a database specialization and has MBA in project and IT management. Marcelo has
been working at Microsoft for over 5 years. He's also a professor of MBA courses for databases, data
architecture, and cloud computing. With 17+ years of experience in roles such as software engineer,
consulting manager, and solutions sales specialist, he shares his knowledge of data technologies on
his YouTube channel "Dicas de Dados" and is very active on LinkedIn.

I dedicate this book to everyone who is in search of a successful career in data but is still walking this
journey. It’s possible, and this book was written to support you on it.

About the reviewers
James Reeves is a self-described technology nerd who has spent far too much time around data and
yet keeps going back for more. As an experienced data engineer and architect, James loves to “think
outside of the box” to create innovative solutions and believes that doing data discovery is like being
a detective!

Abhishek Mittal is a cloud solution architect who has more than 9 years of experience in business
intelligence and data warehousing space. He delivers exceptional value to customers by designing high-
quality solutions and leading their successful implementations. His work entails architecting solutions
for complex data problems for various clients across various business domains, managing technical
scope and client expectations, and managing the implementation of a solution. He is a Microsoft
Azure-certified professional and works as a senior architect with Nagarro. He is very passionate about
learning and exploring new skills. He is gregarious in nature and always believes in sharing knowledge
and helping others. You can reach out to him on LinkedIn.

Kasam Shaikh, a hybrid and cross-cloud practitioner, is a seasoned professional with 14 years of
demonstrated industry experience, working as a Microsoft Azure cloud specialist with one of the
leading IT companies in Mumbai, India. He is a Microsoft MVP in AI and among the only three AI
MVPs from India. He is a global Azure AI speaker and author of four best-selling books on Microsoft
Azure and AI. He is also the founder of Dear Azure – Azure INDIA (az-india), an online community for
learning Azure AI. He owns a YouTube channel, where he shares his expertise on Microsoft Azure AI.

First, I would like to thank the Almighty, ALLAH, my mother, wife, and especially my little daughter,
Maryam, for motivating me throughout the process, and Packt for believing in and considering me for
this awesome contribution.

Anindita Basak is a cloud architect with almost 15+ years of experience, the last 12 years of which she
has been extensively working on Azure. She has delivered various real-time implementations on Azure
data analytics, and cloud-native and real-time event-driven architecture for Fortune 500 enterprises,
ranging from banking, financial services, and insurance (BFSI)to retail sectors. She is also a cloud and
DataOps trainer and consultant, and author of cloud AI and DevOps books.

Preface� xv

Part 1: Core Data Concepts�

1
Understanding the Core Data Terminologies� 3

Understanding the core data
concepts� 3
What is data?� 4
How is data stored in a modern cloud
environment?� 7

Describing a data solution� 8
Transactional databases� 8
Analytical databases� 9

Defining the data type and
proper storage� 11
Characteristics of relational and non-
relational databases� 12

A transactional workload� 15
An analytical workload� 17

Understanding data
ingestion� 18
Understanding batch load� 19
Understanding data streaming � 20

Case study� 21
Summary � 22
Sample questions and
answers� 23
Answer key � 23

2
Exploring the Roles and Responsibilities in Data Domain� 25

Different workforces in a data
domain� 25
Most common roles in a data domain� 25
Database Administrator� 26
Data engineer� 26

Data analyst� 26

Tasks and tools for database
administration profiles� 27
Tasks of the DBA� 27

Table of Contents

Table of Contentsviii

Tools for the DBA� 28

Tasks and tools for data
engineer profiles� 30
Tasks of the data engineer� 31
Tools for the data engineer� 31

Tasks and tools for the data
analyst � 33

Tasks of the data analyst� 33
Tools for the data analyst� 33

Case study� 34
Summary � 36
Sample questions and
answers� 36
Answer key � 37

3
Working with Relational Data� 39

Exploring the characteristics of
relational data� 39
Tables and entities� 40
Relationship between entities� 40

Exploring relational data
structures� 40
Data normalization� 40

Introducing SQL� 42
Key advantages of SQL� 43
Key disadvantages of SQL� 43
Understanding the categories of SQL
commands� 44

DDL� 45
DML and DQL� 46

Describing the database
components� 48
Views� 48
Stored procedures� 49
Triggers� 49
Indexes� 50

Case study� 50
Summary� 52
Sample questions and answers� 53
Answer key � 53

4
Working with Non-Relational Data� 55

Exploring the characteristics
of non-relational data� 55
Understanding the types of
non-relational data� 56
Non-structured data� 56
Semi-structured data� 57
Non-relational data basic storage� 57

Exploring NoSQL databases� 58

What is a NoSQL database?� 58
Key-value store� 58
Document database� 59
Column family database� 60
Graph database� 62

Identifying non-relational database
use cases� 64
Case study� 64

Table of Contents ix

A 360-degree customer view� 65
Fraud detection – financial
institutions� 67

Summary� 67
Sample questions and answers� 67
Answer key� 69

5
Exploring Data Analytics Concepts� 71

Exploring data ingestion
and processing� 71
Data pipelines� 72
Data ingestion types� 74
Data source connectors� 74

Exploring the analytical data
store� 76
Data warehouse� 76
Data lake� 76
Hybrid approaches� 76

Exploring an analytical data
model� 77
Facts and dimensions� 78

Exploring data visualization� 79
Case study� 81
Data-driven culture� 81

Summary� 82
Sample questions and answers� 82
Answer key� 84

Part 2: Relational Data in Azure�

6
Integrating Relational Data on Azure� 87

Exploring relational Azure
data services� 87
Elastic pool� 89

Use cases� 98

Summary� 99
Sample questions and
answers� 100
Answer key� 100

7
Provisioning and Configuring Relational Database Services
in Azure� 101

Technical requirements� 101
Provisioning relational Azure
data services� 102

Provisioning Azure SQL Database� 102
Provisioning Azure Database for
PostgreSQL and MySQL� 110

Table of Contentsx

Configuring relational databases
on Azure� 114
Configuring Azure SQL
Database� 115

Configuring and managing Azure
Database for PostgreSQL and
MySQL� 119

Summary� 120
Sample questions and answers� 121
Answer key� 122

8
Querying Relational Data in Azure� 123

Technical requirements� 123
Introducing SQL on Azure� 124
Querying relational data in
Azure SQL Database� 124
Common connection issues� 129

Querying relational data in Azure
Database for PostgreSQL� 137

Connecting to Azure Database for
PostgreSQL� 138
Querying Azure Database for
PostgreSQL� 140

Summary� 143
Sample questions and answers� 143
Answer key� 144

Part 3: Non-Relational Data in Azure�

9
Exploring Non-Relational Data Offerings in Azure� 147

Exploring Azure non-relational
data stores� 148
Exploring Azure Blob storage� 148
Azure Data Lake Storage Gen2� 149
Exploring Azure Files� 150
Exploring Azure Table storage� 151

Exploring Azure NoSQL
databases� 152
Exploring Azure Cosmos DB� 153

Azure Cosmos DB APIs� 153
Core (SQL) API� 154
MongoDB API� 154
Table API� 155
Cassandra API� 155
Gremlin API� 156

Summary� 157
Sample questions and
answers� 157
Answer key� 158

Table of Contents xi

10
Provisioning and Configuring Non-Relational Data Services
in Azure� 159

Technical requirements� 159
Provisioning non-relational
data services� 160
Provisioning Azure Cosmos DB� 160
Configuring Azure Cosmos DB� 167

Creating a sample Azure Cosmos DB
database� 168

Provisioning an Azure
storage account and Data
LakeStorage� 171
Summary� 173
Sample questions and
answers� 173
Answer key� 174

Part 4: Analytics Workload on Azure�

11
Components of a Modern Data Warehouse� 177

Describing modern data
warehousing� 177
Challenges of traditional data
warehouses� 178
The birth of big data� 179
Azure HDInsight� 180
Modern data warehouse� 181
Azure for the modern data warehouse� 181

Exploring Azure data services
for modern data warehouses� 182
Data ingestion and preparation
(ELT/ETL)� 182
Data storage – Azure Data Lake
Storage Gen2� 183
Data ingestion – Azure Data Factory and
Azure Synapse Analytics� 183

Data preparation – Azure
Databricks� 184
Modern data warehouse – Azure
Synapse Analytics� 185

Real-time data analytics –
Azure Stream Analytics, Azure
Synapse Data Explorer, and
Spark streaming� 192
Azure Stream Analytics� 192
Azure Data Explorer and Azure
Synapse Data Explorer pools� 193
Apache Spark Streaming� 193
Delta Lake� 194

Summary� 194
Sample questions and answers� 194
Answer key� 195

Table of Contentsxii

12
Provisioning and Configuring Large-Scale Data Analytics
in Azure � 197

Technical requirements� 198
Understanding common practices
for data loading� 198
Provisioning an Azure Synapse
workspace� 198
Practicing data load� 202
Data storage and processing� 208
Azure serverless SQL pool� 209

Azure dedicated SQL pool� 211
Azure Spark pools� 216
Azure Synapse Link� 220
Azure Synapse Data Explorer� 220
Azure Machine Learning� 222

Summary� 223
Sample questions and answers� 224
Answer key� 225

13
Working with Power BI� 227

Technical requirements� 228
Introducing Power BI� 228
The building blocks of
Power BI� 228
Exploring Power BI
Desktop� 230
Creating a Power BI file� 232
Creating a connection� 234

Publishing a report� 236

Exploring Power BI Service� 238
Creating a dashboard� 238

Power BI mobile app� 240
Summary� 242
Sample questions and answers� 242
Answer key� 243

14
DP-900 Mock Exam� 245

Practice test – questions� 245
Core data concepts� 246
Relational data on Azure� 247
Non-relational data on Azure� 248

Modern data warehouse analytics
on Azure� 249

Practice test – answers
and explanations� 250

Table of Contents xiii

Core data concepts� 251
Relational data on Azure� 254
Non-relational data on Azure� 257

Modern data warehouse analytics
on Azure� 260

Summary� 262

Index� 265

Other Books You May Enjoy� 276

Preface

Today, the world’s leading companies are data-driven, and a good strategy for using data is one of the
key success factors for organizations worldwide. Following this trend, there is a growing demand for
professionals trained to work with this data, orchestrating, processing, and generating intelligence
from it.

Microsoft Certified Azure Data Fundamentals (Exam DP-900) Certification Guide will introduce you
to the fundamental knowledge required to ensure successful data projects in Azure, preparing you
for the DP-900 certification test.

Going through basic concepts of data as well as hands-on exercises with Azure data services, this book
will teach you about the different technologies offered in Azure and when to use each one.

The book is structured in four parts. The first covers core data concepts, the second relational data in
Azure, the third covers non-relational data in Azure and the fourth part covers analytics workloads
on Azure, ending with a mockup of the DP-900 test evaluating the knowledge acquired.

Who this book is for
This book is for data engineers, database administrators, or aspiring data professionals getting ready to
take the DP-900 exam. It will also be helpful for those looking for a bit of guidance on how to be better
equipped for Azure-related job roles such as Azure database administrator or Azure data engineer. A
basic understanding of core data concepts and relational and non-relational data will help you make
the most out of this book, but they're not a pre-requisite.

What this book covers
Chapter 1, Understanding the Core Data Terminologies, is all about creating a knowledge foundation
around data types, transactional databases, analytical databases, data ingestion, and data stores.

Chapter 2, Exploring the Roles and Responsibilities in Data Domain, continues your introduction to
the different job roles associated with creating, managing, and using databases. You will learn about
the key responsibilities of these roles and the tools that these roles use on the Azure and Microsoft
cloud portfolios.

Chapter 3, Working with Relational Data, explores the relational model for databases, how tables are
structured, how you can use indexes to improve query performance, and how you can use views to
simplify complex queries.

Prefacexvi

Chapter 4, Working with Non-Relational Data, explores non-relational databases and how they compare
to relational databases. You will learn about the different types of non-relational databases commonly
used by applications.

Chapter 5, Exploring Data Analytics Concepts, covers how to generate insights by processing data into
a data analytics system, enabling the business to carry out data-driven operations.

Chapter 6, Integrating Relational Data on Azure, covers the Azure data services for relational databases,
including Azure SQL Database, Azure Database for PostgreSQL, Azure Database for MySQL, and
Azure Database for MariaDB. You will explore scenarios for using these database management systems.

Chapter 7, Provisioning and Configuring Relational Database Services in Azure, teaches you how to
provision and configure Azure SQL Database, Azure Database for PostgreSQL, and Azure Database
for MySQL.

Chapter 8, Querying Relational Data in Azure, explores Structured Query Language (SQL) and how
you can use it to query, insert, update, and delete data in Azure SQL Database.

Chapter 9, Exploring Non-Relational Data Offerings in Azure, explores Azure data services for
non-relational data, including Azure Table storage, Azure Blob Storage, Azure Files, and Azure Cosmos
DB, as well as situations for using them.

Chapter 10, Provisioning and Configuring Non-Relational Data Services in Azure, looks at how to
provision and configure Azure Cosmos DB and Azure Data Lake Storage.

Chapter 11, Components of a Modern Data Warehouse, examines the components of a modern data
warehouse. You will understand the role of services such as Azure Databricks, Azure Synapse Analytics,
and Azure HDInsight. You will also see how to use Azure Synapse Analytics to load and process data.

Chapter 12, Provisioning and Configuring Large-Scale Data Analytics in Azure, explores data ingestion
options to build a data warehouse with Azure, services to perform data analytics, and features of Azure
Synapse Analytics. You will create a Synapse Analytics workspace and use it to ingest and analyze data.

Chapter 13, Working with Power BI, is where you will learn what Power BI is, including its building
blocks and how they work together.

Chapter 14, DP-900 Mock Exam, provides practice tests to prepare you for the DP-900 exam.

To get the most out of this book
You will need a computer with Windows or macOS with internet access to download the Azure Data
Studio and Power Bi Desktop software, as well as access to the Azure portal and the Azure service
websites. All code examples have been tested using Azure Data Studio on the Windows 11 operating
system. However, they should work with macOS, Linux, and future version releases too.

Preface xvii

Power BI Desktop and the mobile app can be downloaded from here:

https://powerbi.microsoft.com/en-us/downloads/

Azure Data Studio can be downloaded from here:

https://learn.microsoft.com/en-us/sql/azure-data-studio/download-
azure-data-studio

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-
DP-900-Certification-Guide. If there’s an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/LTQeN.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

https://powerbi.microsoft.com/en-us/downloads/

https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/LTQeN

Prefacexviii

A block of code is set as follows:

html, body, #map {

 height: 100%;

 margin: 0;

 padding: 0

}

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://www.packtpub.com/support/errata
https://authors.packtpub.com

Preface xix

Share your thoughts
Once you’ve read Microsoft Certified Azure Data Fundamentals (Exam DP-900) Certification Guide,
we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-803-24063-6

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily!

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803240633

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803240633

Part 1:
Core Data Concepts

This part will provide complete coverage of the knowledge and skills required for the Skills measured
under the Describe Core Data Concepts section of the exam syllabus. We will also cover knowledge
and skills that go beyond exam content so that you are prepared for a real-world, day-to-day Azure
data-focused role.

In this part, you will learn about the concepts surrounding data projects, from the terminology and
the roles of a data team to the different types of data workloads, such as relational, non-relational,
and analytical.

This part comprises the following chapters:

•	 Chapter 1, Understanding the Core Data Terminologies

•	 Chapter 2, Exploring the Roles and Responsibilities in Data Domain

•	 Chapter 3, Working with Relational Data

•	 Chapter 4, Working with Non-Relational Data

•	 Chapter 5, Exploring Data Analytics Concepts

1
Understanding the

Core Data Terminologies

Welcome, dear reader!

This book has been prepared based on the knowledge that you need to pass the Azure DP-900 Data
Platform Fundamentals exam. So, you will find detailed use cases, hand's-on exercises, as well as
sample questions and answers to help you during the exam.

This book will not only prepare you for certification but also complement the knowledge needed for
planning and working in a data organization. You can look forward to learning about transactional
and analytical database concepts, SQL and NoSQL, when to use each option, and the most modern
tools and techniques for implementation on Azure.

Data generation and data processing have been growing exponentially in recent years. Data is being
generated and processed everywhere: in information systems, cell phones, smart watches, smart TVs,
city buses, subways, and cars, among others. Knowing how to capture and process this data to generate
intelligence provides today’s main competitive advantage in the market.

To start understanding how these technologies and solutions work, it is necessary to know the concepts
of data storage and processing, which we will cover in this introductory chapter.

By the end of this chapter, you will be able to understand the following:

•	 The types of data and how to store it

•	 Relational and non-relational data

•	 Data Analytics

•	 How to differentiate the data workloads

Understanding the core data concepts
To start, let’s understand the terminologies used in the data world so that all the following concepts
are easily interpreted to be applied to technologies.

Understanding the Core Data Terminologies4

What is data?

Data is a record, also called a fact, which can be a number, text, or description used to make decisions.
Data only generates intelligence when processed and then this data is called information or insights.

Data is classified into three basic formats: structured, semi-structured, and unstructured data. We will
learn about them all in the following sections.

Structured data

Structured data is formatted and typically stored in a table represented by columns and rows. This data
is found in relational databases, which organize their table structures in a way that creates relationships
between these tables.

The following figure shows an example of a simple table with structured data:

Figure 1.1 – Example of structured data in a database

In this example, the table called CUSTOMER has seven columns and six records (rows) with
different values.

The CUSTOMER table could be part of a customer relationship management (CRM) database, for
example, financial and enterprise resource planning (ERP), among other types of business applications.

Semi-structured data

Semi-structured data is a structure in which records have attributes such as columns but are not
organized in a tabular way like structured data. One of the most used formats for semi-structured
data is JavaScript Object Notation (JSON) files. The following example demonstrates the structure
of a JSON file containing the registration of one customer:

JSON FILE - Document 1

{

  "CUSTOMER_ID": "10302",

  "NAME":

Understanding the core data concepts 5

  {

    "FIRST_NAME": "Leo",

    "LAST_NAME": "Boucher"

  },

  "ADDRESS":

  {

    "STREET": "54, rue Royale",

    "CITY": "Nantes",

    "ZIP_CODE": "44000",

    "COUNTRY": "France"

   }

}

In this example, we can see that each JSON file contains a record, like the rows of the structured data
table, but there are other formats of JSON and similar files that contain multiple records in the same file.

In addition to the JSON format, there is data in key-value and graph databases, which are considered
semi-structured data, too.

The key-value database stores data in a related array format. These arrays have a unique identification
key per record. Values written to a record can have a variety of formats, including numbers, text, and
even full JSON files.

The following is an example of a key-value database:

Figure 1.2 – Example of a key-value database

Understanding the Core Data Terminologies6

As you can see in the preceding figure, each record can contain different attributes. They are stored
in a single collection, with no predefined schema, tables, or columns, and no relationships between
the entities; this differentiates the key-value database from the relational database.

The graph database is used to store data that requires complex relationships. A graph database
contains nodes (object information) and edges (object relationship information). It means that the
graph database predetermines what objects are and the relationships they will have with each other,
but the records can contain different formats. The following is a representation of nodes and edges in
a graph database of sales and deliveries:

Figure 1.3 – Example of a graph database

The diagram demonstrates how the relations around the ORDER entity are created in a graph database,
considering the CUSTOMER, LOCATION, SUPPLIER, and PRODUCT nodes in the process. It
represents an interesting acceleration in terms of query processing in the database because the graph
is already structured to deliver the relations faster.

Unstructured data

In addition to structured and semi-structured data, there is also unstructured data, such as audio,
videos, images, or binary records without a defined organization.

This data can also be processed to generate information, but the type of storage and processing for
this is different from that of structured and semi-structured data. It is common, for example, for
unstructured data such as audio to be transcribed using artificial intelligence, generating a mass of
semi-structured data for processing.

Understanding the core data concepts 7

Now that you understand the basics of data types, let’s look at how that data is stored in a
cloud environment.

How is data stored in a modern cloud environment?

Depending on the data format, structured, semi-structured, and unstructured cloud platforms have
different solutions. In Azure, we can count on Azure SQL Database, Azure SQL Database for PostgreSQL,
Azure Database for MySQL, and database servers installed on virtual machines, such as SQL Server
on a virtual machine in Azure, to store structured data. These are called relational databases.

Semi-structured data can be stored in Azure Cosmos DB and unstructured data (such as videos and
images) can be stored in Azure Blob storage in a platform called Azure Data Lake Storage, optimized
for queries and processing.

These services are delivered by Azure in the following formats:

•	 Infrastructure as a service (IaaS) – Databases deployed on virtual machines

•	 Platform as a service (PaaS) – Managed database services, where the responsibility for managing
the virtual machine and the operating system lies with Azure

For these database services to be used, they must be provisioned and configured to receive the
data properly.

One of the most important aspects after provisioning a service is the access control configuration.
Azure allows you to create custom access role control, but in general, we maintain at least three profiles:

•	 Read-only – Users can read existing data on that service, but they cannot add new records or
edit or delete them

•	 Read/Write – Users can read, create, delete, and edit records

•	 Owner – Higher access privilege, including the ability to manage permission for other users
to use this data

With these configured profiles, you will be able to add users to the profiles to access the data
storage/databases.

Let’s look at an example. You are an administrator of a CUSTOMER database, and you have the Owner
profile. So, you configure access to this database for the leader of the commercial area to Read/
Write, and for salespeople to Read-only.

In addition to the permissions configuration, it is important to review all network configurations,
data retention, and backup patterns, among other administrative activities. These management tasks
will be covered in Chapter 7, Provisioning and Configuring Relational Database Services in Azure.

In all database scenarios, we will have different access requirements, and it is important (as in the
example) to accurately delimit the access level needs of each profile.

Understanding the Core Data Terminologies8

Describing a data solution
There are two types of database solutions: transactional solutions and analytical solutions. In the
following sections, we will understand in detail what these solutions are and the requirements for
choosing between them.

Transactional databases

Transactional databases are used by systems for basic operations: creating, reading, updating, and
deleting. Transactional systems are considered the core of the informatization of business processes.
With these basic operations, we can create entities such as customers, products, stores, and sales
transactions, among others, to store important data.

A transactional database is commonly known as online transaction processing (OLTP) considering that
this type of database serves online transactional operations between the application and the database.

For an organization, transactional databases usually have their data segmented into entities, which
can be tables (or not), with or without a relationship between these entities to facilitate the correlation
between this data.

For example, an e-commerce database can be structured with a table called Shopping_Cart, which
represents the products that are being selected in the store during user navigation, and another called
Purchases with the completed transaction records.

The process of segmenting entities in a database is called normalization, which will be covered in
Chapter 3, Working with Relational Data.

The format of a normalized transactional database is optimized for transactional operations, but it is
not the best format for data exploration and analysis.

Describing a data solution 9

The following is an example of a relational transactional database:

Figure 1.4 – Example of a relational transactional database

The preceding figure demonstrates a relational database of transactional workloads in a sales and
delivery system. We can see the main entity, Orders, joined to Employees, Shippers, Customers,
and Order Details, which then detail all products of this order in the relationship with the Products
entity, which looks for information in the Categories and Suppliers entities.

Analytical databases

When the data solution requires a good interface for queries, explorations, and data analysis, the data
storage organization is different from transactional databases. To meet this requirement, we prioritize
the data aggregations and relationships for data consumption and exploration; this specialized data
storage is called an analytical database.

Analytical databases use a process called online analytical processing (OLAP) and have undergone
a great evolution in recent years with the emergence of data warehouses and big data platforms.

Understanding the Core Data Terminologies10

Analytical databases are constituted through a process of data ingestion, and they are responsible for
processing and transforming the data into insights and information and then making this processed
information available for consumption. The following steps describe this process:

1.	 Data ingestion – The process responsible for connecting to transactional databases or other
data sources to collect raw transaction information and include it in the analytical database

2.	 Data processing – The process performed by the OLAP platform to create a data model,
organize entities, perform indicator calculations, and define metrics for data consumption

3.	 Data query – After the data model is loaded with the proper organization for querying, data
manipulation and reporting tools can connect to the OLAP platform to perform your queries

The following diagram is an example of a structured data model in an OLAP database:

Figure 1.5 – Example of an analytical relationship

Defining the data type and proper storage 11

The following diagram is a simple comparison of OLTP and OLAP databases:

Figure 1.6 – Data flow between OLTP and OLAP

The preceding figure demonstrates the traditional flow of data, which is sourced and stored
in transactional OLTP databases and then moved to OLAP analytical databases for data
intelligence generation.

Important note
There are modern data storage platforms that aim to unite OLTP and OLAP on the same platform,
but these databases, often called NewSQL, still need to mature their structures to deliver the
best of transactional and analytical worlds in the same database. The industry standard is to
keep transactional and analytical data structures separate.

In this section, we defined what transactional and analytical data solutions are and the characteristics
of each solution. In the next section, we will detail the recommended data types and storage for each
of these types.

Defining the data type and proper storage
Categorizing the data to identify its types and best solutions for your storage is an important process for
a data solution, and not just for evaluating whether it is structured, unstructured, or semi-structured.
In this section, you will learn about the characteristics of different types of data.

Understanding the Core Data Terminologies12

Characteristics of relational and non-relational databases

Relational databases are the most traditional and used database format, as they have an easy-to-
understand design and a simple tabular data model like other simple platforms such as Excel spreadsheets.
Relational databases have predefined schemas, which are the structures of their tables, containing
columns, the data type of each column, and other parameters such as primary and secondary keys
used in relationships.

However, relational databases with these rigid schemas can pose challenges, as presented in the
following example.

Your CRM system has a database structure with a CUSTOMER table, where you intend to store customer
data: CUSTOMER_ID, CUSTOMER_NAME, ADDRESS, MOBILE_PHONE, and ZIP_CODE. To do
this, you start by creating a CUSTOMER table with five fields:

Figure 1.7 – Example of a CUSTOMER table in a relational database

However, after setting up this table, you realize that you have clients that have more than one address
and zip code, and even more than one mobile phone number. How can you solve this issue?

To face problems like this one, we can use normalization one more time. Normalization is done when
there is a need to split a table (CUSTOMER, in this example) into more child tables that are correlated
to the initial table.

Defining the data type and proper storage 13

Therefore, we can change the CUSTOMER table as follows:

Figure 1.8 – A relationship model in a transactional database

Non-relational databases allow you to store data in its original format without having a predefined
schema as in relational databases. The most common non-relational storage format is document
storage, where each record in the database is an independent file. The benefit is that each file can have
different and unique attributes.

On the other hand, the files being independent can present a challenge: data duplication.

Going back to our CUSTOMER entity example in a relational database, when two or more customers
live at one address, the database records that relationship, and the normalized database only keeps one
address record. But in a non-relational database, if two customers live at the same address, this address
will be presented in the records of the first customer and the second customer as well, independently.

Understanding the Core Data Terminologies14

Let’s now analyze how this storage could be structured in a relational database, using the concept
of normalization:

Figure 1.9 – Example of data structured into tables

The preceding figure exemplifies the data stored within the relational model tables with the CUSTOMER,
CUSTOMER_ADDRESS, and ADDRESS entities to understand the structure of a normalized table.

Now let’s analyze the same data in a CUSTOMER table, but in the format of a non-relational database:

JSON FILE - CUSTOMER

{

  "CUSTOMER_ID": "0001",

  " CUSTOMER_NAME":

  {

    "FIRST_NAME": " MARK",

    "LAST_NAME": " HUGGS"

  },

  "ADDRESS":

  {

    "STREET": "1200, Harper Str"

   }

}

JSON FILE – CUSTOMER2

{

  "CUSTOMER_ID": "0002",

  " CUSTOMER_NAME":

  {

    "FIRST_NAME": " KRISTI",

    "LAST_NAME": " LAMP"

  },

Defining the data type and proper storage 15

  "ADDRESS":

  {

    "STREET": "1200, Harper Str"

   }

}

In the preceding example, we can see two records in a CUSTOMER table, with each record being a
JSON document structured with the attributes of each customer.

Thus, we can observe that the same data can be stored in relational and non-relational structures.

Therefore, to decide between a relational or non-relational data storage solution, you must evaluate
the behavior of the application or the user that will use that database, the relationships between the
entities, and possible normalization processes.

Both relational and non-relational databases should be used primarily for transactional workloads.
In the upcoming sections, we will understand the differences between these transactional workloads
and analytical workloads.

A transactional workload

Relational and non-relational databases can be used as solutions for transactional workloads, which
are the databases used to perform basic data storage operations: create, read, update, and delete
(CRUD). Transactional operations must be done in sequence, with a transaction control that only
confirms the conclusion of this transaction (a process called a commit) when the entire operation
is successfully executed. If this does not occur, the transaction is canceled, and all processes are not
performed, thus generating a process called rollback.

An important idea to help understand the difference between relational and non-relational databases
is ACID, present in most database technologies. These properties are as follows:

•	 Atomicity: This is the property that controls the transaction and defines whether it was
successfully performed completely to commit or must be canceled by performing a rollback.
Database technology should ensure atomicity.

•	 Consistency: For a running transaction, it is important to evaluate consistency between the
database state before receiving the data and the database state after receiving the data. For
example, in a bank transfer, when funds are added to an account, those funds must have a
source. Therefore, it is important to know this source and whether the fund’s source exit process
has already been performed before confirming the inclusion in this new account.

•	 Isolation: This property evaluates whether there are multiple executions of transactions similar
to the current one and if so, it keeps the database in the same state. It then evaluates whether the
execution of transactions was sequential. In the bank transfer example, if multiple transactions
are sent simultaneously, it checks whether the amounts have already left the source for all
transactions, or you need to review one by one, transaction per transaction.

Understanding the Core Data Terminologies16

•	 Durability: This is responsible for evaluating whether a transaction remains in the committed
database even if there is a failure during the process, such as a power outage or latency at the
time of recording the record.

ACID properties are not unique to transactional databases; they are also found in analytic databases.
At this point, the most important thing is to understand that these settings exist, and you can adjust
them as per the requirements of your data solution use case.

Since we are talking about databases, let’s understand an acronym that is widely used to represent
database software: DBMS.

Database management systems

Database management systems (DBMSs), which are database software, have ACID properties within
their architecture, and in addition to performing these controls, they need to manage several complex
situations. For example, if multiple users or systems try to access or modify database records, the
database systems need to isolate transactions, perform all necessary validations quickly, and maintain
the consistency of the data stored after the transaction is committed. For this, some DBMS technologies
work with temporary transaction locks, so that actions are done sequentially. This lock is done during
the process of an action executing in that record; for example, in an edit of a field in a table, the lock
ends as soon as the commit is executed, confirming that transaction.

Some DBMSs are called distributed databases. These databases have their architecture distributed
in different storage and processing locations, which can be on-premises in the company’s data center
or a different data center in the cloud. Distributed database solutions are widely used to maintain
consistency in databases that will serve applications in different geographic locations, but this consistency
doesn’t need to be synchronous. For example, a mobile game can be played in the United States and
Brazil, and the database of this game has some entities (categories, game modes, and so on) that must
be shared among all players. But the transactions from the United States player do not necessarily
need to appear to the player in Brazil in a real-time way; this transactional data will be synchronized
from the United States to Brazil, but in an asynchronous process. Let’s understand this process next.

Eventual consistency

All transactions in distributed databases take longer to process than in undistributed databases
because it is necessary to replicate the data across all nodes in this distributed system. So, to maintain
an adequate replication speed, the distributed databases only synchronize the data that is needed.
This is the concept of eventual consistency, which configures ACID to perform replication between
the distributed nodes asynchronously, after the confirmation of the transaction on the main node
of the database is created. This technique can lead to temporary inconsistencies between database
nodes. Ideally, the application connected to a distributed database does not require a guarantee of
data ordering. It means that the data relating to this eventual consistency may appear to users with
an eventual delay as well. Distributed databases are widely used by social media platforms, for news
feeds, likes, and shares, among other features.

Defining the data type and proper storage 17

Let’s use the following figure to understand the behavior of a database with eventual consistency:

Figure 1.10 – Diagram of an eventual consistency database

The preceding diagram shows behavior that we can observe when querying information in a database
with eventual consistency. Instead of fetching the ball in a sequential way, the hero who retrieved it
made the query of the ball in a future frame, generating a momentary duplication of the ball. In the
end, only one ball was retrieved, after the sync was done.

This is an analogy for an eventual consistency database, where queries do not need to be made on entities
that are already synchronized between all replicas of the database, and sometimes, this momentary
duplication happens until the asynchronous process data update is complete.

In addition to transactional, relational, or non-relational databases, we also have another data workload,
the analytical workload, which we will address in the next section.

An analytical workload

The second category of data solutions is the analytical workloads. These analytical solutions are based
on high-volume data processing platforms, optimized for querying and exploring, and not for CRUD
transactions or with ACID properties. In analytical databases, we aggregate various data sources, such
as more than one transactional database, as well as logs, files, images, videos, and everything that can
generate information for a business analyst.

Understanding the Core Data Terminologies18

This raw data is processed and aggregated, thus generating summaries, trends, and predictions that
can support decision-making.

An analytical workload can be based on a specific time or a sequence of dated events. In these workloads,
it’s common to evaluate only the data that is relevant to the analysis. For example, if you have a sales
system with a transactional database (source) with several tables recording all sales, products, categories,
and customers, among others, it is important to evaluate which of these tables can be used for the
analytical database (destination) and then perform the data connections.

To create an analytical database, it is necessary to perform data ingestion, a process of copying data
from sources to the analytical base. For this, a technique called extract, transform, and load (ETL),
or the more recent extract, load, and transform (ELT), is used. The following figure demonstrates
this process with an example of a transactional database as the data source and the analytical database
as the destination:

Figure 1.11 – Data flow between a transactional database and an analytical database

In the preceding diagram, we can see that transactional databases are storages of information systems
that automate business processes. Analytical databases act on simple and advanced data analysis,
using, for example, statistical models with the application of machine learning, a branch of artificial
intelligence. The data ingestion process is an important process for assembling an analytical database
that meets the data solution. In the next section, we will understand what data ingestion is and the
different types of this ingestion.

Understanding data ingestion
Data ingestion is the process of copying operational data from data sources to organize it in an
analytical database. There are two different techniques for performing this copy: batching data and
online data streaming.

It is important to identify latency requirements between the time when the data is generated in the
source database and the data availability in the analytical database.

Understanding data ingestion 19

Understanding batch load

When batching the data, the operation is offline. You must define the periodicity for creating the
data batch load, collecting data in the data source, and then inserting it into the analytical database.

The periodicity can be hourly, daily, or even monthly, if the requirement of analysis of this data is met.
Events that can trigger a batch load can be a new record on a table entity in the database, an action
triggered by a user in an application, a manual trigger, and more.

An example of batch processing might be the way we get vote counts in elections. The votes are not
counted one by one the moment after the voter has voted, but they are inserted in lots that are processed
during election day until the completion of all charges and the definition of the results.

Advantages of batch load

Batch loads can be heavily used in data solutions, but they do not meet all requirements for data
solutions. The following are two of the advantages of this ingestion technique:

•	 It is the most used method by companies that have multiple transactional systems with large
volumes of data. This is because due to scheduling loads, it can be made at the most convenient
time, such as outside business hours when transactional servers are in lower demand.

•	 You can monitor the loads to verify where you need to optimize a script or a method independently,
so if you need to prioritize one specific load performance, you can manipulate your computing
resources to prioritize that load.

Constraints of batch load

To continue the evaluation of the technique, it is important to understand the constraints of adopting
batch loads as well:

•	 There is a delay between the time of data generation on the transactional database and the
availability of this data on the analytical database, which sometimes makes it impossible to
follow up and immediately make a decision based on the numbers

•	 The full batch of data must be completed to then begin copying, and if there is any data
unavailability, inconsistent data, or network latency between transactional and analytical bases,
among other situations, the batch load will fail

Batch loads can be our default data consumption for legacy databases, file repositories, and other
types of data sources. But there are business requirements to consume some data in near real time,
for monitoring and quick decision-making. And to meet these needs, we have another technique,
called data streaming, which loads data online.

Understanding the Core Data Terminologies20

Understanding data streaming

In data-streaming-based data ingestion, there is an online connection between the data source and
the analytical database, and the pieces of data are processed one by one, in events, right after their
generation at this source. For example, for a sales tracking monitoring solution, sales managers need to
track sales data in near real time on a dashboard for immediate decision-making. The sales transaction
database is linked through a streaming load to the analytical database that receives this data, processes
it, and demonstrates it on a monitoring dashboard.

Another example could be a stock exchange and its real-time stock tracking panels. These dashboards
receive processed information from purchase and sale transaction data for stock papers in a data
stream. See the following figure with the data flow in this scenario:

Figure 1.12 – Stock market example diagram

The load on data streaming is not always done online; it can also be done at intervals that load a
portion of data. Data streaming is a continuous window of data ingestion between the source and
the destination, while in the batch load, each batch opens and closes the connection to the process.

Let us now evaluate the advantages and disadvantages of the data streaming technique.

Advantages of data streaming

The advantages are listed as follows:

•	 The delay between data creation and analytical processing can be minimal

•	 The latency between the source and the target in the order of seconds or milliseconds

•	 Analytical solutions can demonstrate both past data and performance trends, which assists in
immediate decision-making while events are happening

Case study 21

Constraints of streaming data load

The disadvantages are listed as follows:

•	 Most transactional database technologies do not have a native streaming data export technology,
so you need to implement this technique through manual control of what has already been
ingested and what has not yet been ingested. This generates great complexity.

•	 The size of each event is usually small to avoid having a very robust infrastructure to maintain
this event's queue during the streaming. This makes it impossible to ingest large files, videos,
audio, and photos, among others. These loads are often best implemented in batch loads.

In summary, we typically use batch data loads for the most of the structuring operations of the analytical
base, the ingestion of the largest volumes of data, and unstructured data.

To understand in practice how these concepts are applied, let’s now evaluate a case study of a complete
data solution.

Case study
Webshoes is a fictitious sales company of shoes and accessories that is being created. The company’s
business areas have defined that Webshoes will have an online store and that the store will need to
have personalized experiences. The requirements that the business areas have passed to the project
development team are as follows:

•	 Online store – The online store should have a simple catalog with the 12 different products
of the brand

•	 Smart banner – If the customer clicks on a product, similar products should appear in a
Recommended banner, with products that have the same characteristics as the one selected,
but only products that the customer has not purchased yet

•	 Sales conversion messages – If the customer does not complete the sale and has logged into
the portal, the online store should contact the customer via email and a message on their cell
phone later, with the triggering of a few messages created for conversion of the sale

By analyzing these business requirements, we can do the following technical decomposition to select
the appropriate data storage:

•	 Online store – A repository to store the product catalog, a repository to register the sales
through the shopping cart, and a repository to store customer login

•	 Smart banner – Depending on the customer and product selected, a near real-time interaction
of banner customization

Understanding the Core Data Terminologies22

•	 Sales conversion messages – Will be processed after the customer leaves the online store
(closing their login session) and depends on their actions while browsing the website and
purchase history

Now, with the knowledge gained in this chapter, can you help me to select suitable storage types for
each requirement?

Come on, let’s go! Here are the solutions:

•	 Online store – Transactional workload. A SQL relational or NoSQL database can assist in this
scenario very well, as it will have product entities, customers, login information, and shopping
carts, among others, already related in the database.

•	 Smart banner – Analytical workload. For near real-time processing, data streaming is required,
capturing the behavior of the client and crossing it with the other historical data. In this case, an
analytical base can process the information and return the application/banner to the appropriate
message for customization.

•	 Sales conversion messages – Analytical workload. In this case, the customer will have left the
store, and we do not need to work with data streaming but rather a batch load of data. It is
important to evaluate with the business area how long it is optimal to send messages to target
customers, and the analytical base will process the information, generating the message list
to be fired.

Therefore, each use case can define a different data workload type, which influences our database
decision. In the next chapters, we will detail the Azure solutions for SQL transactional databases, NoSQL,
and analytical databases, and the understanding of the different use cases will be simpler for sure.

Summary
In this chapter, we reviewed the core data concepts about data storage and processing, the different data
types, and data solutions. We went through the explanation of relational, non-relatable, transactional,
and analytical data, their particularities, and application cases.

Now you know how to differentiate a transactional database from an application and an analytical
database. In the following chapters, we will go into the details of each of these workloads and of the
Azure services that are implemented for this. But before we detail these structures, in the next chapter,
we will understand the different roles and responsibilities in a data domain.

Sample questions and answers 23

Sample questions and answers
Let’s evaluate some sample questions related to the content of this chapter:

1.	 What type of workload is an OLAP model?

A.	 Analytical workload

B.	 Transactional workload

C.	 Relational database

2.	 How is data in a relational table organized?

A.	 Rows and columns

B.	 Header and footer

C.	 Pages and paragraphs

D.	 Connections and arrows

3.	 Which of the following is an example of unstructured data?

A.	 Audio and video files

B.	 An Employee table with EmployeeID, EmployeeName, and EmployeeDesignation
columns

C.	 A table within a relational database

D.	 A stored procedure in a database

4.	 What type of cloud service is a database deployed in a virtual machine?

A.	 PaaS

B.	 IaaS

C.	 SaaS

D.	 DaaS

Answer key

1-A 2-A 3-A 4-B

2
Exploring the Roles

and Responsibilities in
Data Domain

In this chapter, you will learn about the different professional profiles in a data organization. We will
explore the different responsibilities from the data creation, storage and consumption.

In the DP-900 exam, we can find some questions related to roles and responsibilities in data
organization, but this knowledge is interesting and important as well for anyone who wants to work
in a data organization.

By the end of this chapter, you will be able to do the following:

•	 Understand the different profiles and responsibilities in a data team

•	 Explore the different tools and activities of these profiles

Different workforces in a data domain
Roles with technical activities and other process-oriented roles in business coexist in a modern data
team. These complementary roles are important for developing solutions, not only for storing data
properly but also for data analysis and generating insights connected to business needs.

Most common roles in a data domain

The basic roles of a data domain, found in most organizations, are as follows:

1.	 Database Administrator (DBA): This is the administrator of database platforms. Being a
technical profile, they are responsible for keeping platforms available, secure, and with adequate
access control.

Exploring the Roles and Responsibilities in Data Domain26

2.	 Data engineer: Being a technical profile, the data engineer is responsible for working with data,
performing integrations, aggregations, calculations, modeling, and so on that are necessary for
information and insights generation.

3.	 Data analyst: The data analyst is necessary for establishing the connection of a data team with
the business side. They are responsible for generating indicators, reports, and dashboards, and
supporting data-driven business decisions.

Now, let’s understand the details of each of the profiles in a data domain.

Database Administrator

The DBA is responsible for designing transactional database solutions, choosing between relational and
non-relational databases, and defining the processes of monitoring and administering these solutions.
This profile is commonly responsible for managing analytical databases at the infrastructure, access
control, and monitoring routine layers. Database administration includes keeping databases performing
adequately with application and user needs, supportable backup and data restore continuity plans,
disaster recovery plans, and data security (encryption, masking, access control, and so on).

Data engineer

The data engineer is responsible for planning and implementing data structures. These frameworks
involve data ingestion pipelines, data processing frameworks, and data modeling for business
intelligence consumption.

The data engineer works with DBAs and business areas of the organization to understand the behavior
of database entities, and data analysts to understand the requirements of how data will be consumed.

Data analyst

Responsible for generating intelligence based on data, data analysts are the professionals who consume
the models organized by data engineers to create reports, indicators, and insights for business areas.
This role has the important responsibility of connecting the needs and requirements from business
areas, and the solutions to implement on that, working with the DBAs and data engineers to define
technical solutions and implement the data visualization layers. The following diagram identifies the
data flow that starts in the infrastructure provided and maintained by the DBA, the data pipelines
developed by the data engineer, and then the data analyst modeling and creating reports with the data:

Tasks and tools for database administration profiles 27

Figure 2.1 – A data flow showing the different roles in a data domain

When we are setting up our data strategy, we must pay attention to these profiles to see whether they
serve our entire organization, or whether we have to define other roles.

In complex organizations, there are profiles of complementary professionals such as data scientists and
data stewards, but for the DP-900 certification exam, a basic knowledge of the DBA, data engineer,
and data analyst profiles is sufficient.

After planning a team and evaluating who will have each of these profiles, let’s understand the tools
and tasks of each of them in a data domain.

Tasks and tools for database administration profiles
To support database administration activities, which can be plentiful, it is necessary to have the
appropriate tools for each operation, ensuring scalability, security, and productivity in the administration.

Tasks of the DBA

The tasks performed by the DBA vary greatly from organization to organization, and in the different
database solutions being used. The following are some examples of the key tasks:

•	 Choosing the best data storage options based on the project requirements

•	 Defining a database capacity plan

•	 Installing and configuring databases and database tools

•	 Defining and implementing a data model (normalizing tables, primary and secondary keys
definition, indexes in tables, and so on)

•	 Defining database access roles and managing these accesses

•	 Defining database availability requirements and defining/implementing high availability, load
balancing, backup and restore strategies, and disaster recovery, among other management tasks

•	 Managing contracts with database vendors and managing support for this software

Exploring the Roles and Responsibilities in Data Domain28

The tasks of the DBA are important, but what are the tools that this profile uses on a daily basis
using Azure?

Tools for the DBA

The DBA’s tools also vary, depending on the solutions being used by an organization. There are
specialized tools for each database solution. In this section, we will cover the basic tools required for
the DBA in Azure.

Azure Data Studio

Azure Data Studio is the primary tool for a data professional working with Azure. It offers functions
for DBAs, data engineers, and data analysts, with base administration modules, modeling, exploration,
and even simple visualization layers.

In Chapter 8, Querying Relational Data in Azure, we will use Azure Data Studio to run queries against
Azure databases.

The following is a screenshot from Azure Data Studio:

Figure 2.2 – Azure Data Studio

Tasks and tools for database administration profiles 29

In the preceding figure, we can see a table creation SQL statement running a database in Azure. As
we can see, the interface is very simple and allows you to navigate the database structures (on the left
side), write SQL queries, and follow execution results.

At this point, don’t worry about understanding the SQL instructions in the preceding screenshot; just
focus on knowing that we will execute SQL queries in tools such as Azure Data Studio and SQL Server
Management Studio. Queries will be explored deeper in Chapter 8, Querying Relational Data in Azure,
and Chapter 13, Working with Power BI. Azure Data Studio can connect to SQL Server databases (in
Azure or another host), Azure SQL Database, Azure Storage, PostgreSQL databases, Azure Synapse
Analytics databases, and even Oracle databases, among others. With an easy and powerful query editor
with IntelliSense for these platforms, Azure Data Studio enables integration with DevOps, source code
version control platforms, and code snippets, among other functions.

SQL Server Management Studio

A traditional tool for SQL Server database administrators and users, SQL Server Management Studio has
modernized in recent years, with roles for database administrators and other profiles. The manageability
experience can be a hybrid between SQL Server databases on-premises and databases in Azure:

Figure 2.3 – A SQL Server Management Studio screenshot

Exploring the Roles and Responsibilities in Data Domain30

SQL Server Management Studio is a tool that greatly supports the creation of Transact-SQL scripts to
assemble its databases. These scripts can be used to automate the creation of these databases, control
the versions of tables, and so on.

Important note
Transact-SQL is an enhanced version of the Structured Query Language (SQL), developed
by Microsoft, which includes specific functions for working with the SQL Server database,
among other differentials. When we use Transact-SQL in Chapter 8, Querying Relational Data
in Azure, we will learn about some of these differentials.

The Azure portal

Part of database administration is available through the Azure portal interface, or through the Azure
Command-Line Interface (CLI). The administration tasks you can perform on Azure Portal include
provisioning a new database instance, from configuring serves from provisioning a new database
instance from configuring its size to setting health and monitoring routines, such as health checks,
auto backups, auto replication, and access controls.

The Azure portal has administration capabilities not only for Azure-managed databases (platform-as-
a-service databases) but also for SQL servers that are deployed to infrastructure-as-a-service virtual
machines, through the SQL Server IaaS Agent extension. The SQL Server IaaS Agent extension informs
Azure that a virtual machine has a SQL Server installation.

You can find the benefits and features of the SQL Server IaaS Agent extension in the official Microsoft
documentation on the topic:

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/
windows/sql-server-iaas-agent-extension-automate-management

The DBA is often a professional who works within the IT department, managing database environments.

Let’s now analyze other profile, the data engineer, and their tasks and tools.

Tasks and tools for data engineer profiles
Data engineers have a key role in a modern data organization. It is a multidisciplinary role, so it needs
knowledge of programming, data transformation, and mathematics, among other areas. To support
these important activities, there are several open source and Azure-native tools to help data engineers
perform their day-to-day operations.

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management

Tasks and tools for data engineer profiles 31

Tasks of the data engineer

The following are some examples of tasks that are the responsibility of the data engineer:

•	 Developing data ingestion pipelines

•	 Setting connectivity standards in data sources with proper security and latency

•	 Maintaining data pipelines creating scripts for data structures with versioning control

•	 Applying modern data exploration languages and libraries to generate insights

•	 Supporting database administrators in the necessary analytical database maintenance routines

•	 Modeling and implementing data consumption structures aligned with the business area needs

•	 Supporting the automation of data analysis processes, model creation, and databases (DataOps)

This is just a short list of the responsibilities of the data engineer. This role is usually very flexible in
most organizations, and more specialized in organizations that have more people and greater demand,
where there is a need for assembling integration pipelines or data modeling. Now, let’s get to know
the data engineer tools on Azure.

Tools for the data engineer

The data engineer works with the same tools as the DBA, such as Azure Data Studio and SQL Server
Management Studio, already mentioned in the previous section. However, they also typically use more
complex and specialized tools for data exploration, such as Azure Databricks, Azure HDInsight, and
Azure Synapse Analytics.

Synapse Analytics will be used in Chapter 12, Provisioning and Configuring Large-Scale Data Analytics
in Azure, when we will be evaluating analytical data.

In addition to data exploration activities, the data engineer is responsible for building batch and
stream data load pipelines to build analytical databases. These pipelines can be copies of data from
source or involve a series of transformation steps, aggregations, calculations, and so on. Tools in Azure
to perform these operations are Azure Data Factory, Azure Synapse pipelines, and Azure Stream
Analytics, among others.

We will run some queries in Synapse Analytics Studio in Chapter 12, Provisioning and Configuring
Large-Scale Data Analytics in Azure. The following is an example of data exploration done in Azure
Synapse Analytics Studio:

Exploring the Roles and Responsibilities in Data Domain32

Figure 2.4 – An Azure Synapse Analytics Studio screenshot

In the preceding screenshot, you can clearly see the organization between the hierarchy of objects
present in a data lake or a SQL database (on the left-hand side of the screen) and the workspace
window (on the right-hand side of the screen), where the queries are written and executed. In the
panel at the bottom, the results of executions help us to assess whether this execution was successful
and how long it took.

Azure Synapse Analytics is a work suite for engineers, analysts, and data scientists. We have modules
for ingesting, exploring, and presenting data, all in the same web interface. With Azure Synapse
Analytics, in a single service suite, the data engineer can implement data pipelines, SQL analytics,
and Spark analytics.

Tasks and tools for the data analyst 33

Note
Data engineers commonly use languages such as Python, R, Scala, and so on, in conjunction
with the standard SQL language of databases, to increase the capabilities of modeling and
processing data.

In addition to the more technical profiles of the DBA and data engineer, one of the main roles to
generate results for an organization with a data strategy is the data analyst, which we will detail now.

Tasks and tools for the data analyst
Data analysts are responsible for generating insights from data models and integrations performed
by the data engineer. They create analytical reports and dashboards that support the decision-making
of companies.

The primary function of the data analyst is not to create reports but to analyze in detail the data
visualization requirements of an organization, and then define the best way to present this data.

Tasks of the data analyst

The following are the key tasks of the data analyst:

•	 Creating reports related to the viewing needs of business areas

•	 Simplifying understanding of the data model in reports

•	 Supporting the data engineer in assembling the necessary data integrations, modeling,
and organizations

•	 Creating prototypes and reports, charts, histograms, chart maps, and trend charts, and entering
other representations of the data

•	 Exploring information with advanced techniques, always seeking the best information generated,
based on raw data

The task list can be much longer, depending on the scope of the data analyst in an organization.
However, there are many tools that support these analysts too; let’s now get to know the most widely
used tools in the Microsoft stack.

Tools for the data analyst

The key tools in the Microsoft portfolio for the data analyst to use are Power BI and SQL Server
Reporting Services. Power BI is a market-leading self-service BI platform, and it has enough SaaS
operations and connectors to consume data models in more than 90 types of data storage on the
market. Other ways to explore data models are with traditional spreadsheet tools in Microsoft Excel.

Exploring the Roles and Responsibilities in Data Domain34

The following is a screenshot of a dashboard created in Microsoft Power BI:

Figure 2.5 – A Power BI dashboard sample

In the preceding screenshot, we can see a sample dashboard created in Power BI, with visual elements
and indicators that represent the data processed in an analytical model.

The dashboard object is one of the features of Power BI. In Chapter 13, Working with Power BI, we will
explore the main objects of this very important platform for our data analysis strategy.

Now that we know the three basic profiles of domain data and which tools each one uses in their
day-to-day working in Azure, let’s evaluate a case study of a team implementing a data initiative.

Case study
You are responsible for setting up a data organization in your company, you are working with Azure as
your cloud provider, and you are looking to select professional profiles to organize the data management
and data analytics practices, as well as tools to support these professionals.

Case study 35

Your company has four main applications, a Financial application with controls for accounts payable
and receivable, a Customer Relationship Management (CRM) application for managing customer
data, an e-commerce operation (an online store), and an HR team application for managing
employee information:

•	 Professional one requirement:

You need a professional to manage the four application transactional databases, which are
the following:

	� Two SQL servers on virtual machines

	� One Azure SQL database

	� One Azure Cosmos DB

•	 Professional two requirement:

Create reports that demonstrate the financial reality of the company, merging e-commerce sales
information with the profile and history of the customer present within the CRM, relating to
the data of the sellers that are in the HR application.

For this reason, you need a professional to create an analytical database, which brings together
the relevant information from the four databases and forms the necessary relationships to
create a data model for the reports.

What professional profiles should you have to meet the requirements listed previously, and what are
the basic tools for each profile? Let’s take a look at the answers:

•	 Professional one – the DBA:

	� Tools: SQL Server Management Studio (SSMS), Azure Data Studio, and the Azure portal

	� Justification: They will be responsible for defining the database (transactional and analytical)
system that will store the CRM application data, in addition to monitoring and managing
this database

•	 Professional two – the data analyst and the data engineer:

	� Tools

	� Data Analyst: Power BI

	� Data Engineer: SSMS, Azure Data Studio, and Azure Synapse Analytics

Exploring the Roles and Responsibilities in Data Domain36

	� Justification: In the data domain, we have two profiles to work on these requirements, the
Data Analyst and the Data Engineer. The Data Analyst is responsible for creating reports that
demonstrate the financial reality of the company, merging e-commerce sales information
with the profile and history of the customer present within the CRM, relating to the data of
the sellers that are in the HR application. However, to organize the data before that the data
engineer will perform the data integration and modeling processes, joining the entities and
creating the information consumption structure for the data analyst. These will all be done
using the analytical database provided by the DBA.

Therefore, virtually all data use cases involving storage, transaction, and analysis will need to rely on
these three basic profiles of professionals. Organizations that are more experienced in data exploration
practices may have more specialization roles that complement these ones.

Summary
Managing and manipulating data are not simple operations, and it is necessary to define how data
is organized, have specialized professionals in each role, and use the best tools to ensure success in
a data strategy.

In this chapter, you learned some of the possible roles in a data team, as well as the common tasks
and tools used by these roles in Azure implementations.

With basic knowledge about the different types of data solutions and the profiles of the professionals
who make up a data team, we will dive into the details of relational databases in our next chapter.

Sample questions and answers
Try and answer the following questions:

1.	 Which one of the following tasks is the responsibility of the data engineer?

A.	 Backing up and restoring databases

B.	 Creating dashboards and report

C.	 Creating pipelines to process data in a data lake

D.	 Database maintenance

2.	 Which one of the following tasks is the responsibility of a database manager?

A.	 Backing up and restoring databases

B.	 Creating dashboards and reports

C.	 Creating pipelines to process data in a data lake

D.	 Machine learning development

Sample questions and answers 37

3.	 Which role is most likely to use Azure Data Factory to define a data pipeline for an ETL process?

A.	 Data engineer

B.	 Data analyst

C.	 Database manager

D.	 Data scientist

4.	 Which single service would you use to implement data pipelines, SQL analytics, and
Spark analytics?

A.	 Azure Synapse Analytics

B.	 Azure SQL Database

C.	 Microsoft Power BI

D.	 SQL Server

5.	 Which single service would you use to manage backups and restores on a SQL Server?

A.	 SQL Server Management Studio

B.	 Visual Studio

C.	 A third-party vendor

D.	 SQL backups

Answer key

1-C 2-A 3-A 4-A 5-A

3
Working with

Relational Data

In this chapter, you will learn the concepts of relational databases and the SQL language, which is
widely used by relational database management systems.

We will explore the relational model for databases, how tables are structured, how you can use database
objects such as indexes to improve query performance, and views to simplify complex queries.

The purpose of this chapter is to explore the concepts of relational databases and how SQL is used.
For this reason, we will not run the scripts yet, as the result is not important right now; understanding
the logic is our target.

In Chapter 8, Querying Relational Data in Azure, we will run the SQL scripts and evaluate their returns.

By the end of this chapter, you will be able to understand the following:

•	 The characteristics of relational data

•	 How to build a relational model

•	 Normalization and SQL language concepts

•	 Relational database components

Exploring the characteristics of relational data
Relational data is data that can be organized into a relational model, based on tables and their relationships.

Created in 1985 by Edgar Frank Codd, the relational model is a data storage format that models tables
and the relationships between them before a database begins to receive data.

Let’s start by understanding the relational data characteristics, the basic objects that make up this
approach, and the most common usage scenarios.

Working with Relational Data40

Tables and entities

A table is a materialized structure of an entity for storing structured data in columns and rows.

Entity is anything you want to store data on. They usually represent people, things, actions, processes,
and so on. For example, CUSTOMER, PRODUCTS, SALES, and OFFICES entities can be materialized
in tables within a relational database.

These columns are predetermined and configured to receive specific data types, while the rows will
be the records or data present in the table. A column can be set to be required or not, which is an
important setting to maintain the quality of records. Another relevant setting is data entry masks. For
example, an EMAIL column should contain a text+@+an extension. These data masks help standardize
your data in columns, making the database have better organization and data quality.

Also, in the aforementioned examples, in a CUSTOMERS table, each row represents a customer; in
PRODUCTS, each row represents a product; and in SALES, each row represents a sales record, each
of which has a unique registry identifier in the database. When, in a record row, there is a column that
has no required padding and is left blank, the record in this column is called NULL.

Data types configured by columns can vary between Database Management Systems (DBMs)but
generally use the standard set by the American National Standards Institute (ANSI).

Relationship between entities

Relational databases have a connection between one or more tables; these are called relationships, so
the organization and consumption of the data of this database are done optimally. In the next section,
we will explore these relational database structures.

Exploring relational data structures
Database schema is a table and column model that is designed and implemented before we start using
a relational database.

To begin to understand the details of the relationships between tables in a relational database, let’s
evaluate the process created to troubleshoot data duplication, a process called normalization.

Data normalization

Normalization is used to develop the database schema to minimize data duplication. Data duplication
occurs when we need to write more than one piece of data for a single record.

Exploring relational data structures 41

Let’s look at an example with a table called SALES, with the following columns and records:

Figure 3.1 – A sales table example

As we can observe, in the same single sales record, we had more than one product purchased by
customers. With only one table representing the SALES entity, the data related to ORDER_ID,
ORDER_DATE, and CUSTOMER needs to be duplicated to maintain the integrity of each of the orders.
To avoid this duplication, we can work with normalization by segmenting this table into auxiliary
tables for distributed data storage, as shown in the following example:

Figure 3.2 – An example of a relational database with normalization applied

Working with Relational Data42

In normalized databases, each table has a reference ID or other key field for relationships; these are
called primary keys. These primary keys are used to reference a record from a table in other tables, and
how much this occurs and how many of these keys are written to another table, depends on whether
they have foreign key names.

Relational Database Management Systems (RDBMSs) ensure the integrity of these keys – that is,
deleting a record from a table that has its foreign key referenced in another table is not allowed to
ensure integrity between relationships.

The relationship example presented in the previous diagram is simple, but imagine a scenario with
a big database schema, with tables containing multiple columns/attributes. If all these columns were
duplicated multiple times, the data store would be very redundant. It is exactly this type of duplication
that is avoided with normalization.

Continuing the example, in the CUSTOMER table, we could have attributes such as ADDRESS, AGE,
and GENDER. If you wanted to change one of these attributes, you would only need to edit a single
record in the CUSTOMER table and not all the records for that customer in the initial SALES table,
as shown in Figure 3.1. To take advantage of these relationships and perform query operations in
relational databases, in addition to other write, edit, and delegate operations, we use the SQL language,
which will be covered in the next section.

Introducing SQL
Structured Query Language (SQL) is the most widely used language in relational database platforms
for recording, editing, re-editing, and querying operations. SQL was created by Donald D. Chamberlin
and Raymond F. Boyce in 1974 in an innovation lab at IBM and has since evolved with DBMSs that
use it with Microsoft SQL Server, Oracle Database, MySQL, PostgreSQL, and MariaDB.

SQL has been standardized by ANSI and the International Organization for Standardization
(ISO), but each of the RDBMS has some exclusive extended SQL standard instructions, primarily for
administration, monitoring, and other operations unique to that RDM.

These unique patterns have names such as the following:

•	 T-SQL or Transact-SQL is the version used by Microsoft SQL Server and Azure SQL versions

•	 pgSQL is the default of PostgreSQL databases

We will now list some of the additional advantages that made the SQL language the standard used
in relational databases.

Introducing SQL 43

Key advantages of SQL

The list of advantages is very long, but the main points are as follows:

•	 Standardization: As mentioned, SQL has been standardized by ANSI and is still used in many
database systems. This is why SQL is one of the most documented languages today, easier to
learn, and useful for day-to-day activities.

•	 Simplicity with scalability: SQL is an easy-to-understand language with simple syntax
fundamentals, answering high-scalability database scenarios by processing millions of pieces
of data.

•	 Portability: Because it is standard in several DBMSs, SQL is portable between these different
types of database managers, even though there are some particularities in the SQL of each.

•	 Multiple data views: With SQL, it is possible to define different views of the database structure
for different user needs. For example, you might have users who are only allowed to explore the
data and perform SELECT commands, whereas other users can add columns in tables but cannot
delete any columns. This granularity of permissions makes databases more fully configurable.

Key disadvantages of SQL

Of course, we can find more disadvantages when we know about NoSQL databases, but the disadvantages
most encountered by data architects to justify an analysis of other databases are these:

•	 Database processing cost: In general, the cost of processing a database that uses the SQL
language is high compared to more modern database languages. This means that the database
needs a robust infrastructure for data processing. Compared to a NoSQL database, a SQL
database uses compute power, RAM, and storage speed more intensively.

•	 Pre-build and fixed schema: A SQL database must be planned and implemented (the creation
of tables, columns, relationships, and so on) before implementing the software. Your schema
should be created and, once created, only changed upon a general impact analysis of the database.

This generates a lack of flexibility and more time spent at the beginning of a project in the planning
and implementation of the database.

Important note
As this book prepares you for the Azure DP-900 certification, we will address transact-SQL-
based commands, the default in the relational databases of the Microsoft portfolio.

Let’s now get to know the categories of SQL commands.

Working with Relational Data44

Understanding the categories of SQL commands

To understand the structure of SQL, it is subdivided into five categories of commands:

•	 Data Query Language (DQL): Defines the command used so that we can query (SELECT)
the data stored in the database

•	 Data Manipulation Language (DML): Defines the commands used for manipulating data in
the database (INSERT, UPDATE, and DELETE)

•	 Data Definition Language (DDL): Defines the commands used for creating tables, views, and
indexes, updating these structures (ALTER), as well as removal (DROP)

•	 Data Control Language (DCL): Defines the commands used to control access to database
data by adding (GRANT) and removing (REVOKE) access permissions

•	 Data Transaction Language (DTL): Defines the commands used to manage transactions
executed in the database, such as starting a transaction (BEGIN), confirming it (COMMIT), or
undoing it (ROLLBACK)

The following diagram demonstrates the categories of the SQL language and their main commands
for quick reference:

Figure 3.3 – SQL language categories

Introducing SQL 45

These five categories contain all the necessary syntaxes of SQL commands for operations in a database.
In the next sections, we will learn more about the main categories and their commands.

In this chapter, we will cover DDL, DML, and DQL, the latter also in Chapter 8, Querying Relational
Data in Azure. These are the most important categories of SQL commands for anyone starting to use
SQL databases, and they are also required for the DP-900 certification.

DDL

DDL, as its name suggests, is used to define the creation or editing of the schema of your database,
considering the tables, visualizations, procedures, and all other objects in the database.

The following are the standard DDL instructions for Microsoft databases:

Figure 3.4 – DDL Instructions

To understand this further, we will create examples of these instructions when applied to a table
called Customers.

The first step is to create the table:

CREATE TABLE Customers (

    CustomerID int,

    Name varchar(255),

    Celphone varchar(255),

    City varchar(255)

);

Working with Relational Data46

In the preceding example, we are creating a Customers table and defining that it will receive four
fields, CustomerID, Name, Cellphone, and City, none of which are mandatory.

Now, with our Customers table created, we can use commands from the SQL DML category to
insert data.

DML and DQL

The following is a list of commands that we can use in the SQL DQL and DML categories:

Figure 3.5 – DML and DQL instructions

In this example, we will add the customer Jason data:

INSERT INTO Customers (CustomerID, Name, Cellphone, City)

VALUES (1, 'Jason', '+1 (424) 919-2387', 'Stavanger');

Applying the command above, we are creating a record in the
Customers table, with data from customer Jason.

Remember the CRUD we talked about in Chapter 1, Understanding the Core Data Terminologies?

To implement the basic operations of CREATE, we use the INSERT instruction, and to read is SELECT,
to edit a record is UPDATE, and to delete is DELETE.

Introducing SQL 47

Important note
The CREATE statement is used to create objects such as tables and databases, not to create data.
The data is inserted into the tables, so the INSERT statement is used.

The SELECT statement is the one that has the greatest possibility of being structured because it is
responsible not only for performing queries in tables, with the appropriate filters using the WHERE
add-on, but also for performing operations using the relationships between these entities or tables,
using the JOIN statement.

Here is an example of the SELECT instruction, using WHERE and JOIN between two tables:

SELECT o.ID, o.Date, o.TotalValue, c.Name, c.Celphone

FROM Orders AS o

JOIN Customers AS c

ON o.CustomerID = c.ID

WHERE o.Date="3/30/2022")

ORDER BY c.Name;

In the preceding example, there are two tables: one called Orders, with all the sales orders, and
another called Customers, with customer data. In this SELECT sentence, the goal is to create a list
of the resultant data with the Sales Order ID fields, the total value of that order, the customer’s
name, and the mobile phone of that customer.

We also use the supplementary WHERE clause so that the result is filtered when the order date is
3/30/2022 and that a result list is ordered by the customer’s name, using the ORDER BY clause.

The WHERE clause can also be used to delimit the execution of an UPDATE or DELETE command
by updating and deselecting records from a specific filter table.

Important note
Operations on a database do not have confirmations before committing, which means that if
you start a DELETE operation, the records will be deleted. Therefore, whenever you run a SQL
command of operations such as UPDATE and DELETE, evaluate the use of a WHERE clause to
delimit this execution and ensure a proper backup of your data.

Another important concept in SQL is the NULL value in some columns. NULL means that the column
has no value.

It is common to find NULL values in databases, as it is possible to create records in tables with some
columns without data as long as that column is an optional one.

Working with Relational Data48

When creating a table or when editing a table’s schema, it is possible to include the NOT NULL clause
in a column, and this will ensure this column has to accept values, and not accept NULL, in a record.

We will exercise more SQL in Chapter 8 of this book, where we’ll use the top SQL commands in Azure
relational databases.

In addition to tables, database systems have important components for their operations. In the next
session, we will understand these components.

Describing the database components
There are components in a relational database that are important to maintain the organization and
productivity. The four most common components among database systems are as follows:

•	 Views

•	 Stored Procedures

•	 Triggers

•	 Indexes

Let’s take a look at each of them in detail in the following sections.

Views

A view can be considered a virtual table because it is composed of rows and columns of data, the
results of a SELECT SQL instruction in one or more database tables. Views are great resources for
organizing information from different tables to create reports.

The following is a view example, with the name High_price_products, which is constructed
with a SELECT statement in the PRODUCTS table, filtering the Price field by the average greater
than that of the other products in the table:

CREATE VIEW [High_price_products] AS

SELECT Product_Name, Product_Price

FROM Products

WHERE Product_Price > (SELECT AVG(Product_Price) FROM
Products);

Views are important features, especially for generating reports. But another object that's also widely
used in SQL databases, and which can help in the development of solutions, is a stored procedure,
which we’ll look at in the following section.

Describing the database components 49

Stored procedures

A stored procedure is a set of SQL statements stored in a database. These statements can request data
entry parameters, which are used as variables during execution, and can constitute a data output.

In the following example, we can see the creation of a stored SQL procedure called All_Customers,
which requests two variables, City and PostalCode, to filter the results in the query:

CREATE PROCEDURE All_Customers

@City nvarchar(30), @PostalCode nvarchar(10)

AS

SELECT * FROM Customers WHERE City = @City AND PostalCode = @
PostalCode

GO;

Objects in a database need a trigger to be called and start executing. For this reason, there is an object
in relational databases called a trigger. Let’s analyze it now.

Triggers

Triggers are a type of stored procedure, configured to call whenever an event occurs. This trigger can
be used, for example, to signalize the execution of some statements whenever new data is included in
a table, or a record is edited in the table.

Many trigger use cases are about creating transaction audit tables and maintaining data consistency,
by reviewing relationships before confirming any type of transaction. We can use a trigger in the data
definition and for data manipulation instructions.

In the following, we will use the DDL CREATE statement, which we have already seen in this chapter
to create tables, but now we will use it to create a TRIGGER:

CREATE TRIGGER LOG_PRICE_HISTORY before update

on PRODUCTS_SERVICES

for each row

insert into PRICE_HISTORY

values(old.PRODUCTID, old.BASEPRICE, old.DISCOUNT, old.
FINALPRICE, old.DATELASTUPDATE);

Executing this command, the LOG_PRICE_HISTORY trigger will be created and linked to the
PRODUCTS_SERVICES table, with the following condition: whenever an item is edited in this
table, a new record will be created in the PRICE_HISTORY table with the data from this table before
the change.

Working with Relational Data50

This makes it possible for you to keep a history of this table and know exactly the changes that were made.

Sometimes, tables become very large, with thousands and even millions of records. This size can
cause performance problems in database operations, and one of the methods used to mitigate these
problems was indexes, which we are going to look at now.

Indexes

An index is created by a table or view to define a field that can be used to optimize queries.

The best way to understand an index is to observe the index section typically present in a book. This
section summarizes the main topics in the book and references the page each topic begins on. This is
exactly what an index does in a database table or view.

Some database platforms have an auto index; others use the primary key of the tables to create
their indexes.

You can create multiple indexes in each table. Each index generates a record in an internal database
table, with a copy of the data in order and pointers that indicate the fastest way to get to the information,
which help the database search system find that record.

To create an index in a table, the SQL statement is very simple:

CREATE INDEX IDX_CUSTOMERNAME

ON CUSTOMERS(Name);

This way, we create an index called IDX_CUSTOMERNAME in the CUSTOMERS table, using the Name
field to help the database organize queries for customer names.

So, we close the main SQL commands used in relational databases. Of course, all commands are used
in a large database, but by understanding the statement and how they work, you will surely be able to
implement your commands at the right time.

Now, to finish, let’s evaluate a complete case study based on SQL language.

Case study
In this case study, we will analyze the creation of a relational database for a simple bank checking
account system.

To start structuring the database, we will perform the DDL of database creation and tables, with the
proper types of data in each column, its primary keys, and indexes:

1.	 The first sentence will create a database called CRM:

CREATE DATABASE CRM;

Case study 51

2.	 We continue to create the Customers table; in it, we will put the fields that will store the
attributes of this client, which show the type of data in SQL, which of the fields cannot be
NULL, and the primary key:

CREATE TABLE Customers(

    CustomerID int NOT NULL PRIMARY KEY,

    LastName varchar(255) NOT NULL,

    FirstName varchar(255) NOT NULL,

    FullAddress varchar(255),

    City varchar(255)

);

3.	 Now, let’s create an index in the LastName field of this table:

CREATE INDEX idx_lastname

ON Customers(LastName);

Great! This way, we have already created the schema from our database.

4.	 Now, let’s explore data operations by inserting two records into the Customers table:

INSERT INTO Customers (CustomerID, LastName, FirstName,
FullAddress, City)

VALUES ('001536', 'Malcom', 'Thomas', '1156 Congress
Avenue', 'Dallas');

INSERT INTO Customers (CustomerID, LastName, FirstName,
FullAddress, City)

VALUES ('001537', 'Diaz', 'Matt', '7373 Sunrise Street',
'Miami');

5.	 To evaluate whether the records were written correctly to the database, let’s do a SELECT statement:

SELECT * FROM Customers;

If your table has only the two records, the result will be like this:

Figure 3.6 – The SELECT statement results

Working with Relational Data52

6.	 The customer Matt has just reported a change of address, which you can update with the
UPDATE command:

UPDATE Customers

SET FullAddress = '3877 Arlington Avenue', City=
'Arlington'

WHERE CustomerID = 1537;

SELECT * FROM Customers;

Let’s look at the result:

Figure 3.7 – The new SELECT statement results after UPDATE

With that, we can analyze a use case of the SQL language for table creation, data inclusion, editing,
and data selection. The important thing is to understand the sequence of events required to create
and use a database.

A simple database like this can already store very valuable information for individual entrepreneurs
and small companies, organizing customer data and guaranteeing its history in the database.

An extension of this case would be to include tables of products and sales, correlating with the table
customers to understand which products have already been purchased by these customers. This way,
we would already have a simple sales system in the database.

In the next chapters, we will undergo more exercises about SQL and more real use cases, and you will
have the chance to explore them by yourself.

Important note
These commands could be used in various relational databases that use SQL because they are
base commands of the language. The only concern is about the differences in column data
types, which are usually different between one platform and another.

Summary
As we have observed, SQL commands are simple and intuitive but very scalable. Based on this, relational
databases are the most used database format on the market.

Sample questions and answers 53

In this chapter, we learned about the fundamentals of relational databases, table normalization, and
the basics of SQL.

In the next chapter, we will address non-relational databases, considering so-called NoSQL (Not
Only SQL).

Sample questions and answers
Let’s evaluate some sample questions and answers about relational databases for the DP-900 certification:

1. Which of the following statements is characteristic of a relational database?

A.	 A row in a table represents a data type.

B.	 Rows in the same table can contain different columns.

C.	 A table has columns (attributes) and rows (records).

D.	 All columns in a table should have the same data type.

2. Which SQL statement is used to create new rows in a table?

A.	 CREATE ROW

B.	 CREATE

C.	 INSERT

D.	 NEW ROW

3. What is an index?

A.	 A structure that enables queries to locate rows in a table quickly

B.	 A virtual table based on the results of a query

C.	 A pre-defined SQL statement that modifies data

D.	 A type of primary key column

4. Which statement is an example of DDL?

A.	 SELECT

B.	 INSERT

C.	 DELETE

D.	 DROP

Answer key

1-C 2-C 3-B 4-D

4
Working with

Non-Relational Data

With the evolution of applications, new database formats were required, and several open source
projects began a new group of database specialization, not only using the SQL standard but also
creating the NoSQL concept for non-relational databases.

In this chapter, you will learn about non-relational and NoSQL databases, and understand the different
types of non-relational databases and their common applications.

This is the fundamental information needed for the Describe how to work with non-relational data on
Azure item in the Skills measured section of the exam’s syllabus.

By the end of this chapter, you will be able to understand the concepts of NoSQL databases, including
the following:

•	 Characteristics of non-relational data

•	 Understanding the types of non-relational data

•	 NoSQL databases

•	 Identifying non-relational database use cases

Exploring the characteristics of non-relational data
The relational database that we discussed in the previous chapter is widely used, but it does not fit
some types of existing data. This data is related to transaction logs, audio files, videos, images, and
formatted files such as JSON and XML, among others.

For this reason, specific databases have been created for non-relational data.

Working with Non-Relational Data56

Generated data needs to be stored, some of it temporarily and some permanently. Some types of data
files are structured and prepared to be stored in a relational database, and others are semi-structured
or unstructured, as we already discovered in Chapter 1, Understanding the Core Data Terminologies.
This data is called non-relational data. Let’s better understand these structures and how we can store
each type of unstructured or semi-structured data.

The characteristics of non-relational data are as follows:

•	 They are usually files

•	 They have different organization schema formats, and these formats are mutable to any new record

•	 They do not have primary key flagging or indexers

•	 They have different query format needs

For example, a video file might have the basic need only to reproduce the video when needed. A JSON
file might need to be queried in a chain of relationships with other JSON files, which is a Graph format
that we will address shortly in this chapter. Therefore, due to the flexible characteristics of this data,
storage systems need to respect these characteristics and maintain interfaces for basic create, read,
update, and delete (CRUD) operations.

In the next section, we will understand the types of non-relational data and how to make the best
decision to store them.

Understanding the types of non-relational data
Non-relational data is all types of data that we can store in an entity, and is not relationally structured
data. This means that any type of document, event, log, photo, or video, among others, can be stored
in a non-relational database.

Now, let’s look at the different types of non-relational data.

Non-structured data

Non-structured data is data that does not have queryable formatting and can be from log files without
header structures, image files, videos, and audio, among other binary formats. These files are not easily
interpreted by query indexing tools, so they are called unstructured.

Before this data becomes information and can assist in decision-making, it is necessary to go through
systems that organize the data of these files in a way that facilitates their understanding by the query tools.

Here are two examples of categories of data transcription processes from unstructured files:

•	 Speech-to-Text (STT) – Audio-to-text transcription

•	 Optical Character Recognition (OCR) – Text extraction in images

Understanding the types of non-relational data 57

These processes are responsible for transcribing data from files into structured text. In most cases, the
result of the data transcription platforms used in non-structured data is stored in JSON files, which
are considered semi-structured data.

Here are some examples of Azure Cognitive Services tools that can perform data transcription from
unstructured files:

•	 Azure Computer Vision – OCR capability in images

•	 Azure Speech service – Audio transcription capability from audio or video files

•	 Azure Video Analyzer for Media – Video-to-text transcription

Therefore, files containing unstructured data can generate semi-structured data files and can then be
stored in databases.

Semi-structured data

Semi-structured data is generally JSON, CSV, XML, or other files that contain some kind of metadata
for an organization but are not simple to insert into a predefined tabular structure, such as in a
relational database.

These files, despite having a structure of attributes and data, need to be organized and optimized
for queries.

Non-relational data basic storage

Before we start to explore non-relational databases, some types of data files don’t need to be in a
database system because they need to be stored only for querying and editing controls of the files.

In cloud environments, it is very common for these files to be stored in object stores; in Azure, the
service is called Azure Blob Storage.

This storage is an object store optimized for storing very large volumes of unstructured data, with
access control and versioning to evaluate whether file binaries have changed.

However, these object stores do not have a database structure to process queries and should not be
used to perform CRUD transactional operations, only to store files securely and work with Download
and Upload operations.

Important note
When Azure Blob Storage is configured as Azure Data Lake Storage Gen2, it can be used as
a document store for big data and data analytics workloads. In this configuration, CRUD
operations are performed by the big data and data analytics platform, while the data continues
to be stored in the repository.

Working with Non-Relational Data58

So, if your non-relational data needs to perform CRUD operations, you should opt for NoSQL databases,
which we will address in the next section.

Exploring NoSQL databases
To store non-structured and semi-structured data in an organized manner and perform CRUD
operations, NoSQL database projects were started by the open source community. The main characteristic
of NoSQL databases are flexibility the database schema, accepting different types of data insertion
because the data will be organized at the time of the query. That is, these databases have the schema
defined in the data query and not when the data is inserted into the database.

What is a NoSQL database?

NoSQL means Not Only SQL, thus it is a database that can accept standard SQL language statements
but can also have other interfaces to perform operations on the database.

NoSQL databases are flexible and have multiple forms of operation, not just using the SQL language,
based on the open source projects to specialize the database for some use cases.

You should know the different formats of NoSQL databases for the DP-900 certification, and this
knowledge helps to meet the needs of querying the data. For each of these formats, there are different
types of technology solutions, which will also be exemplified in the next sections.

Key-value store

In this type of NoSQL database, the data is stored in a very simple way, in a two-column tabular organization:

•	 Key – A unique identifier of that record

•	 Value – All data from that record

Despite the simplicity, the key-value type of NoSQL database is scalable and partitionable, being
suitable for high-volume data storage, which, in many scenarios, becomes a challenge for SQL
language databases.

In the Value field, you can store several attributes from that record. This causes the Key field to be
used for indexing and querying, and the Value field to keep all the details of the record.

Important note
In key-value databases, it is common to have big records in the Value column. But this large
volume of data in the Value column (with more attributes or very long data) does not impact
the query speed of this database because of the keys.

Exploring NoSQL databases 59

Some usage cases for key-value databases can be found in games, marketing databases, and Internet
of Things (IoT) solutions.

One of the most well-known key-value database systems on the market is the open source database,
Cassandra. In Azure, you have two possibilities for key-value databases, the Azure Cosmos DB
Cassandra API and the new Azure SQL Managed Instance for Apache Cassandra, which will be
covered in detail in Chapter 9, Exploring Non-Relational Data Offerings in Azure.

The following is a key-value database example using a phone directory:

Figure 4.1 – Key-value database example

In the preceding figure, we can observe that the key-value database is formed of only two columns,
and the key is indexed for queries and the value contains the details of that record. Now that we
understand the key-value database, let’s evaluate one of the most widely used NoSQL patterns on the
market, the document database.

Document database

A document database (sometimes called a document store or a document-oriented database) is a
NoSQL database that stores data in documents.

Document-type databases accept JSON files, which for many developers becomes simple because they
can structure these files within their source code and work with the files being stored and integrated
between the different NoSQL databases in the document database format.

Some of the benefits of a document database are as follows:

•	 An intuitive data model that developers can work with quickly and easily

•	 A flexible schema that permits the data model to adapt as the demands of the application change

•	 The ability to scale out horizontally

•	 Document databases are general-purpose databases that may be employed in several use cases
and sectors due to these benefits

Working with Non-Relational Data60

The following is a one-document database record sample. This document stores information about
Ryan that could be added to a Customers collection:

JSON FILE – Customer Ryan

 {

     "_id": 345,

     "first_name": "Ryan",

     "email": "ryan@email.com",

     "spouse": "Marie",

     "likes": [

        "soccer",

        "baseball",

        "workout"

     ],

     "businesses": [

        {

           "name": "Pro Consulting",

           "status": "Ongoing",

           "date_founded": {

              "$date": "2011-02-11T01:00:00Z"

           }

        }

     ]

  }

In this example, we can look at the attributes on the left side, preceded by " ":, and the contents
of this record.

The difference with a table, with columns and rows, is that the document is created by individual
records and maintains a hierarchy of attributes as we can see by the businesses attribute; this
makes the bank have its data model flexible at the time of insertion of a new record.

Column family database

A column family database is a type of NoSQL database that uses a column-oriented model to store data.

A keyspace is a notion used in column family databases. In the relational paradigm, a keyspace is
like a schema. All the column families (such as tables in the relational model) that contain rows and
columns are contained in the keyspace.

Exploring NoSQL databases 61

The following figure demonstrates this keyspace involving different column families:

Figure 4.2 – The keyspace structure column families

In the following figure, we can observe the detailing of each of the Data boxes in Figure 4.2, and it
represents a record recorded in the database :

Figure 4.3 – Details of the Data records in the column family

Let’s understand these elements:

•	 Column – A name, a value, and a timestamp appear in each column.

•	 Name – This is the name of the name/value pair.

•	 Value – This is the name/value pair’s value.

•	 Timestamp – This information includes the date and time the data was entered. This can be
used to find the most recent data version.

Working with Non-Relational Data62

Let’s take look at a column family database example with sample data:

Figure 4.4 – A column family containing three rows, where each row contains its own set of columns

The column family database has a different architecture, but it is a very simple database to use in
practice, and I hope that with the preceding example, the layout of the records in this database has
become clear.

Two of the most well-known databases in this format are Cassandra and HBase.

Now that we understand the column family database, let’s meet one that has a different architecture:
the graph database.

Graph database

Instead of tables or documents, a graph database maintains nodes and relationships.

A graph database is a database that represents and stores data as graph structures containing nodes,
edges, and characteristics for semantic queries.

The graph connects the store’s data items to a set of nodes and edges, with the edges signifying the
connections between the nodes.

Exploring NoSQL databases 63

Because relationships are permanently kept in the database and can be easily seen using graph databases,
they are advantageous for highly interconnected data.

Relationships are stored in a much more flexible style alongside the data pieces (nodes). Everything
in the system is designed to go through data quickly; each core can handle millions of connections
per second.

Graph databases handle major issues that many of us face regularly when we try to explore the data
visually. These are the main use cases for graph databases:

•	 Navigate through complex structures

•	 Find hidden connections between items that are far apart

•	 Find out how products are related to one another

One of the major graph database use cases is social networks, to connect different users in the network
based on interests and behaviors. Look at the following sample:

Figure 4.5 – A graph database with a social network implementation

As shown in the preceding figure, data interconnections are clear and facilitate the exploration of
these relationships through queries.

Now that we’ve evaluated the types of NoSQL databases, let’s evaluate the top use cases for
non-relational databases.

Working with Non-Relational Data64

Identifying non-relational database use cases
You must be wondering how we decide between a relational or non-relational database in a new application.

The following are a few characteristics of a non-relational database:

•	 Flexibility during development – Although the type of data matters in the decision, many
companies and applications adopt NoSQL databases because the development team needs
flexibility and speed, choosing not to draw the relational database schema before starting coding.

•	 Modern software architecture (microservices) – Modern applications are typically developed in
the concept of microservices, which are small independent applications that interact to generate
the complete application. These services have different storage needs and query formats, and
NoSQL solutions often best suit these multi-database scenarios. For example, a document type
of storage to store orders in a sales system, or a key-value simple table to store information
about the active session of the application, and so on, are use cases for NoSQL databases.

•	 Hybrid data storage – How do we store structured, semi-structured, and unstructured data in
the same database? This is only possible with NoSQL. You can store transactional data, such as
customer records, customer photos, and sales transaction logs, all in the same database. This
hybrid storage can facilitate organization and related queries in this data.

•	 High scalability – A relational database needs to be planned because there are table size,
number of columns, and other limitations. In NoSQL databases, the idea is that they have no
limits, or at least the writing is not prevented by capacity outages. Queries are responsible for
interpreting the different formats of data and organizing the data, aggregating the data, and
creating the ResultSet data as a return.

•	 Near real-time solutions – NoSQL database solutions have greater integration with data
streaming technologies. For use cases where data is written within the database and needs to
be processed to generate some feedback, NoSQL databases can better address these integrations
and give quick results.

Therefore, if you have any of the usage scenarios explained in the preceding points, you should consider
a NoSQL database adoption analysis.

Case study
To understand how a NoSQL database works, let’s explore two possible use cases and understand the
most appropriate requirements, solutions, and NoSQL database format for them.

Case study 65

A 360-degree customer view

It is common for organizations to find customer data spread across multiple control systems, separated
into departments and verticals, and stored in data silos.

For example, imagine the phone support in a company. This company has a customer behavior analysis
procedure in place when browsing its websites, sales interaction history, and basic customer registration.

These behaviors have important customer data, and we can use a graph database to connect all these
data into a single view and explore it:

Figure 4.6 – Four isolated customer data silos

Working with Non-Relational Data66

To create a consolidated view of customer data, we copy this information to a NoSQL graph database:

Figure 4.7 – One single customer structure excluding the data silos

With this new basis, you can see a customer diagram view with its vertices demonstrating the data
and relationships between them.

Summary 67

Fraud detection – financial institutions

One of the biggest challenges for financial institutions is detecting fraud.

These financial institutions have distributed systems that record the behavior of their products’ use by
customers and record historical fraud operations that occurred. Let’s evaluate three different solutions
to support fraud with NoSQL in this use case:

•	 With these two pieces of information: the product use behavior and historical fraud operations
records, you can use a NoSQL graph database that stores the behavior of a fraudulent transaction.

•	 A NoSQL document database can be used to receive data from a transaction, and as soon as that
file is generated, perform a graph base query to define the transaction’s fraud risk percentage.

•	 A NoSQL key-value database can still be used to store the results of fraud tests for easy querying
and definition of the next steps by the software that is calling these databases.

Therefore, in this example we use three different types of NoSQL databases for semi-structured data
storage, thus creating a high-speed and scalability database solution.

Summary
NoSQL non-relational databases are designed for specialized data storage and management in use cases
that relational databases were not optimized for, but we should always reflect on these possibilities,
requirements, and objectives before deciding on which database will be used.

In this chapter, we looked at the characteristics of non-relational databases, created the different types
of data and NoSQL databases, and evaluated use cases for NoSQL database solutions.

But not all databases are for transactional operations. In the next chapter, we will enter the analytical
world, evaluating the important aspects of decision-making for an analytical database.

Sample questions and answers
Try answering the following questions to test your knowledge:

1.	 Which of the following is a document’s unique identifier, which is often hashed for even data
distribution and helps in data retrieval from the document in the document data store?

A.	 Primary key

B.	 Hash key

C.	 Secondary key

D.	 Document key

Working with Non-Relational Data68

2.	 The object data values and named string fields in documents are managed by a document
data store. The document key is a unique identifier for the document that is frequently hashed
to ensure that data is distributed evenly. It facilitates data retrieval from the document. The
document key is established automatically in certain document databases, while in others, you
must set a property of the document and use it as the document key. Select the correct statement:

A.	 A document data store’s document does not have a primary key. The data is obtained using
a document key, which is a unique identifier.

B.	 In the document data storage, there is no hash key. The data is obtained using a document
key, which is a unique identifier.

C.	 There is no secondary key in the document of a document data store. The data is retrieved
with the help of a unique identifier, the document key.

D.	 The document key is a unique identifier for the document, often hashed for the even
distribution of data. It helps in the retrieval of data from the document.

3.	 Non-relational data systems, often known as NoSQL databases, are well suited to managing
vast amounts of unconnected and frequently changing data, making them an excellent choice
for database migration. Select the correct statement:

A.	 Inventory management systems necessitate a certain structure, as well as the necessity for
constant database and system synchronization.

B.	 For dealing with enormous volumes of unconnected, constantly fluctuating, and ambiguous
data, database migration systems can use Azure’s non-relational data solutions.

C.	 Accounting systems are often associated with legacy systems that are designed for relational
structures, undermining the importance of non-relational data.

D.	 Complex querying requirements and the necessity for multi-row transactions are common
in transaction management systems. As a result, Azure’s non-relational data products may
not be a good fit.

4.	 Which of the following are unstructured data examples?

A.	 Binary data files and audio files

B.	 JSON files

C.	 Tables in a SQL Server database

D.	 Excel spreadsheets

5.	 Structured data is data that has a predefined structure. In a relational database, structured data
is often tabular data represented by rows and columns. Unstructured data is data that lacks a
specific structure. Semi-structured data does not reside in a relational database but still has
some structure. Which of these statements is incorrect?

Sample questions and answers 69

A.	 Audio and video files, as well as binary data files, are structured data since they have a
specific structure

B.	 Because it has predefined columns and structure, a table in a SQL Server database is an
example of structured data

C.	 Structured data is exemplified by a student table with a defined set of rows

D.	 Semi-structured data includes documents in the JavaScript Object Notation (JSON) format

Answer key

1-D 2-D 3-B 4-A 5-A

5
Exploring Data

Analytics Concepts

Now that we understand how to store our transactional data in databases, in this chapter, we will
address generating intelligence with that data through data analytics. In modern software architecture,
analytical workloads are important for processing data in near-real-time and creating smarter solutions
based on that data.

These concepts are important for understanding the logic behind Azure Data Analytics services, which
are evaluated in the DP-900 test and can be used in your projects.

By the end of this chapter, you will understand data ingestion, processing, modeling, and visualization
concepts, which make up the end-to-end data flow for data analytics.

In this chapter, we will cover the following topics:

•	 Data ingestion and processing

•	 Analytical data store

•	 Analytical data model

•	 Data visualization

Exploring data ingestion and processing
The process of obtaining and importing raw data for immediate use, processing, or storage is known
as data ingestion.

To build an analytical environment, we use data ingestion techniques to copy data from sources and
store it within a data lake or an analytical database; this process is called a data pipeline.

Data ingestion pipelines are composed of one or more steps of data processing, that is, a dataset of
the data source is captured and processed, and then the output dataset is generated.

Exploring Data Analytics Concepts72

Data pipelines

Data pipelines load and process data through connected services, allowing you to select the best
technology for each phase of the workflow.

For example, in Azure, you can use a SQL Server as a data source, then use Azure SQL Database to
run a store procedure that searches for data values, and then run a processing routine with Azure
Databricks by applying a custom data model. All of these are steps in a data pipeline.

Data pipelines can also have built-in activities that do not need to be linked to a service, such as a
filter, aggregation, calculation, and so on.

Important note
Analytical workloads should not be implemented directly in transactional databases. For example,
if your application is running on a SQL Server, it is not recommended to connect a business
intelligence tool such as Power BI directly to that database. Transactional and analytical processes
are concurrent in the performance usage of resources, so the approach needs to be separated.

A few years ago, there was a lot of talk about extract, transform, and load (ETL) pipelines. This means
that at the time of data extraction, the data engineer has already created the transformation routines
necessary for the analysis of this data and then performed the load of the result in an analytical database.

With the advent of big data and the concept of data lakes, a variation of this acronym was created
called ELT, which stands for extract, load, and transform. This sequence change between the letters
means that the data will be copied in its raw format to the data lake, and then modeling routines are
performed so that this data is prepared for consumption.

Currently, we favor data ingestion for this process, and the role responsible for planning and implementing
the data pipelines is that of the data engineer.

To understand the complete data flow from ingestion to data consumption by data analysts, let’s
understand the following diagram:

Exploring data ingestion and processing 73

Figure 5.1 – Data flow in an analytical environment

Let’s discuss the components of the diagram:

1.	 Data ingestion and processing – The process begins with the ingestion of data sources, which,
in this example, is data generated on social networks, mobile device data, and system databases.
At this stage, the processing used for filtering and data transformation is the ETL and ELT
techniques, before being loaded in the analytical data store.

2.	 Analytical data store – The data is stored in an analytical data store. This store can be an object
store or a relational table in an analytical database.

3.	 Analytical data model – Modeling consists of creating the aggregations, calculations, key
performance indicators (KPIs), and relationships, based on a data modeling technique, so that
this data becomes information prepared to be consumed by data analysts. Often, these models
are called data cubes because they demonstrate a particular subject (called a fact) in various
perspectives (called dimensions), thus allowing data analysts to consume this data and drill
down to understand the details of the information. We’ll drill down further into this concept
in the Exploring an analytical data model section later in this chapter.

4.	 Data visualization – Data analysts consume modeled data and generate reports based on
business area requirements. These reports may contain calculations, filters, and aggregations,
but it is not ideal for data to be transformed so that data governance remains active.

Important note
Databases called NewSQL have the proposition of eliminating the need for the data copying
process of data ingestion. Also, the data is written transactionally in these databases and this
data would already be available for analytical purposes. But these technologies are new and
still have some limitations, which makes data ingestion the predominant standard in the data
analytics market.

.

Exploring Data Analytics Concepts74

Now, let’s look at the different types of data ingestion performed in analytical workloads.

Data ingestion types

Data ingestion pipelines can be processed in two ways:

•	 Batch processing – The ingestion layer receives data from sources sequentially and sends it to
the application in batches. To define incremental loads, the data can be classified according to
a set of rules or criteria, such as whether specific conditions are met. This method is suitable
for applications that do not necessitate real-time data.

•	 Stream or real-time processing – Stream processing does not categorize data in any way.
Instead, each piece of data is loaded as an event and processed as a separate object as soon as it
is recognized by the ingestion layer. This strategy should be used by applications that demand
real-time data analysis.

Now that you have understood the different techniques of data ingestion, let’s analyze a super important
point in this process—how to connect to our data sources.

Data source connectors

Choosing the right method of connection to the data source and the target can be the success factor
for implementing your data ingestion pipeline.

On Azure, we have tools such as Azure Synapse Pipelines and Azure Data Factory, which have more
than 90 different standard connectors for batch loads.

To work with stream data ingestion, the most used options are Azure Event Hubs and Azure Stream
Analytics, but there are also specialized solutions such as Azure IoT Hub and Azure Logic Apps,
among others.

In the following figure, we can look at the list of connectors that are available in Azure Synapse Pipelines.
Connectors are for SaaS solutions such as Salesforce, Marketo, SAP Cloud, and Dynamics 365, and
for databases such as Oracle DB, DB2, SQL Server, files, and API connections:

Exploring data ingestion and processing 75

Figure 5.2 – Azure Synapse Pipelines – list of connectors

After the data source connection, you can perform some filtering or selection operations, and
then you generate your result set to target the destination, which will be the analytical data store.
In the next section, we will discuss this type of storage; we’re going to exercise these operations in
Chapter 12, Provisioning and Configuring Large-Scale Data Analytics in Azure.

Exploring Data Analytics Concepts76

Exploring the analytical data store
After the ingestion process, the result set is stored in an analytical data store, which can be a relational
database (the default in data warehouse solutions) or a standard object store in big data lakes.

It is important to evaluate these two types of storage. Let’s discuss them in detail.

Data warehouse

A data warehouse is a relational database with a predefined schema, designed for data analysis
purposes rather than transactional workloads.

Analytics databases are typically denormalized in a scheme in which numeric values are stored in
central fact tables, which are linked to one or more dimension tables that represent entities that can
be aggregated.

A fact table can, for example, contain sales order data that can be grouped by customer, product,
store, and time (allowing you, for example, to easily find the total monthly sales revenue per product
for each store).

The star schema is a type of fact and dimension table schema that is often developed in a snowflake
schema by adding extra tables connected to dimension tables to describe dimensional hierarchies
(for example, product may be related to product categories).

When you only have transactional data that can be organized into a structured schema of tables and
you want to query it using SQL, a data warehouse is an excellent option.

Data lake

A data lake is a repository of files for access to high-performance data, typically in a distributed
filesystem. This is ideal for accepting not only structured data in our data loads but also semi-structured
and unstructured data.

To process queries in stored files and return data for reports and analysis, technologies such as Spark
or Hadoop are often employed.

These systems often use a schema technique in reading to create tabular schemas in semi-structured
data files as they are ready for analysis, rather than imposing limitations when data is saved.

Data lakes are ideal for storing and analyzing a variety of structured, semi-structured, and unstructured
data without the need for schema application when data is written to storage.

Hybrid approaches

In a lake database or data lakehouse, you can employ a hybrid solution that combines elements of
data lakes and data warehouses.

Exploring an analytical data model 77

Raw data is stored as files in a data lake, and a relational storage layer abstracts the underlying files
and exposes them as tables, which can be queried using SQL.

Data lakehouses are a relatively new approach to Spark-based systems and are enabled by technologies
such as Delta Lake, which adds relational storage capabilities to Spark, allowing you to define tables
that enforce schemas and transactional consistency, support batch loading, and streaming and query
data sources using a SQL API.

The concept of data analytics architecture will become clearer when we exercise the implementation
of a modern data warehouse in Chapter 12, Provisioning and Configuring Large-Scale Data Analytics
in Azure.

Closing the analytical flow, we will now detail the concepts of an analytical data model.

Exploring an analytical data model
Analytical data models allow you to organize the data so that it can be analyzed.

Models are defined by the quantitative values that you want to analyze or report (known as measures)
and the entities by which you want to aggregate them and are based on connected data tables (known
as dimensions).

A model can, for example, include a table with numerical sales measures (such as revenue or quantity),
as well as dimensions for products, customers, and time. This would combine sales data of one or
more dimensions (for example, to identify total revenue per customer or total items sold per product
per month).

The model is conceptually a multidimensional structure known as a cube, where each location in
which the dimensions meet represents an added value.

To understand this cubed data organization, let’s look at the following figure:

Figure 5.3 – Cube data model

Exploring Data Analytics Concepts78

In the example, we are analyzing a fact (Sales) and we have the following dimensions:

•	 Premises for sale – store 1, store 2, and store 3

•	 Sale value – 120, 185, 47, and so on

•	 Product category - Pharmacy, Grocery, Produce, and Dairy

•	 Sale months – June, July, Aug, Sept, and Oct

With this data organization, the generation of information can be very granular, generating all the
intelligence necessary for decision-making.

But what are facts and dimensions? Let’s look at these concepts now.

Facts and dimensions

Dimension tables are the entities that you want to use to aggregate numeric metrics, such as products
or customers. A row with a unique key value represents each entity.

The remaining columns include properties of an entity, such as names and categories for
Product, or addresses and gender for Customer. Most analytical models include a Time
dimension so that number measures related to occurrences can be aggregated over time.

In the following figure, we can observe a table called Fact_Sales, which has dimensions based on
Store, Date, and Product in other tables:

Figure 5.4 – Fact and dimension table sample

Exploring data visualization 79

These dimensions are connected to the fact table, which is the central entity of analysis and makes
connections and aggregations with the other dimension tables. It provides us granularity for data
exploration around the different dimensions of this data model.

Important note
The data modeling theme is extensive, but the concepts presented in this book are sufficient
for you to start a data warehouse project and to be prepared for the DP-900 certification issues.

Now that we understand the process of ingestion, processing, and storing the data, let’s talk about
the visualization layer.

Exploring data visualization
Modern data analysis systems serve business intelligence (BI) workloads that include data modeling and
visualization. Essentially, data visualization enables data-driven decisions to be made in organizations.

We will explore data visualization in detail in Chapter 13, Working with Power BI.

Data analysts can use a variety of data visualization tools. For example, charting support in productivity
tools such as Microsoft Excel and built-in data visualization widgets on notebooks are used to explore
data on services such as Azure Synapse Analytics and Azure Databricks, to visually explore data and
summarize insights.

Enterprise-scale business analytics, on the other hand, often require an integrated system that can
enable complex data modeling, interactive reporting, and secure sharing.

Exploring Data Analytics Concepts80

The following is an example of data modeling in Power BI Desktop:

Figure 5.5 – Data modeling in Power BI

As we can see, Power BI Desktop allows you to create an analytical model using data tables imported
from one or more data sources. You can create relationships between fact tables and dimension tables by
defining hierarchies, renaming table columns, changing data types, and other transformation activities.

Important note
Data visualization tools are not the only data target processed in a data analytics environment.
In modern applications, it is common to have a data exposure layer modeled via APIs to return
applications’ results.

Now, with the concepts of data ingestion, storage, modeling, and visualization, we’ve completed all
the data flow items in an analytical environment.

Case study 81

Case study
Data analytics is today one of the main topics within companies. With it, the use cases are endless,
depending on the industry of the organization and the department that is working on the data.

In this chapter, we will discuss a case study of a global food company, a leader in its field, detailing its
journey of implementing a data analytics strategy.

Data-driven culture

In a large and complex organization, the ability to balance continuity and change has been key to its
success. The enterprise realized that in order to react rapidly to the market, its staff required improved
access to data and to create a data-driven culture.

These building blocks are used as the foundation for analytical solutions for an organization in business
areas such as financial management, marketing, sales, and HR.

This organization is utilizing innovative technologies, including blockchain, IoT, and cloud computing,
to make shopping even more frictionless and personalized, for more than 100 million customers
monthly. Figure 5.6 demonstrates the interaction between the person (customer) and the coffee shop,
which runs data analytics in the cloud:

Figure 5.6 – The interaction between the person (customer) and the coffee shop

Exploring Data Analytics Concepts82

To give users of the company’s app a better-tailored experience, they have been utilizing reinforcement
learning technology, a sort of machine learning in which a system learns to make judgments in
complicated, unexpected contexts based on external feedback.

Customers receive personalized order suggestions within the app, which is powered by a reinforcement
learning platform created and hosted in Azure. The members with active rewards receive intelligent
recommendations for food and drinks via the app based on local store inventory, popular choices,
weather, time of day, community preferences, and past orders thanks to this technology and the
expertise of internal data scientists.

Customers are more likely to receive ideas for goods they’ll like thanks to personalization. For instance,
if the customer often purchases dairy-free beverages, the platform can deduce that the customer
prefers non-dairy products, so avoid recommending items that include dairy and instead, propose
dairy-free meals and beverages.

Reinforcement learning essentially enables the program to learn more about each user. The final goal
is an interpersonal connection, even though a machine is what drives the recommendations.

The organization enabled all users worldwide to access the data, using a data analytics structure based
on Azure and Power BI. The organization has implemented its self-service BI approach in stages, starting
with department systems and integrating their Enterprise Resource Planning (ERP) based on SAP.

Summary
A data analytics workload involves a data flow, which starts with the data ingestion and processing
technique, through to storing and modeling, until it is prepared to be consumed by visualization tools.

The most important knowledge of this chapter sits on the concepts behind this analytical process
because when we get to future chapters (which are more hands-on), you will have the proper knowledge
to implement the data analytics concept using Azure Synapse Analytics and Power BI.

This knowledge is a foundation for the preparation for the DP-900 test because part of the questions
is based on concepts and not only on specific configurations.

In the next chapter, we begin Part 2 of our book, which will be more technical and provide more
details about Azure tools for relational databases.

Sample questions and answers
In this section, you will see sample questions about Microsoft tools. Do not be alarmed; we will cover
them in the next chapters, but usually, the data analytics concepts are evaluated in DP-900 asking
questions or analyzing implementation scenarios in Microsoft analytics platforms.

Sample questions and answers 83

Here are some questions:

1.	 You’ve gathered data in a variety of formats from a variety of sources. Now, you must convert
the data into a single, consistent format. Which of the following processes would you use?

A.	 Data ingestion

B.	 Data modeling

C.	 Data storage

D.	 Dataset

2.	 The process of transforming and translating raw data into a more useable format for analysis
is known as ____________:

A.	 Data cleaning

B.	 Data ingestion

C.	 Data modeling

D.	 Data analysis

3.	 Choose the best sequence for putting the ELT process into action on Azure:

A.	 Prepare the data for loading by extracting the source data into text files. Use PolyBase or
the COPY command to load the data into staging tables. Transform the data and insert
it into production tables by storing it in Azure Blob storage or Azure Data Lake Storage.

B.	 Extract the data from the source into text files. Place the information in Azure Data Lake
Storage or Azure Blob storage. Make sure the data is ready to be loaded. Using PolyBase
or the COPY command, load the data into staging tables, transform the data, then insert
the data into production tables.

C.	 Extract the data from the source into text files. Place the data in Azure Blob storage or
Azure Data Lake Storage, as appropriate. Make sure the data is ready to be loaded. Use
PolyBase or the COPY command to load the data into staging tables. Fill in the blanks in
the production tables with the data and then transform the information.

D.	 Prepare the data for loading by extracting the source data into text files. Use PolyBase
or the COPY command to load the data into staging tables. Place the data in Azure Blob
storage or Azure Data Lake Storage, as appropriate. Fill in the blanks in the production
tables with the data and then transform the information.

4.	 Consider the following statements:

	� S1: Make dashboards available to others, particularly those who are on the go

	� S2: Use Power BI mobile apps to view and interact with shared dashboards and results

Exploring Data Analytics Concepts84

	� S3: Import data and produce a report in Power BI Desktop

	� S4: Upload to the Power BI service, where you can create new dashboards and visualizations

The common flow of activities in Power BI is represented by which of the following sequences
of the preceding statements?

A.	 S1-S2-S4-S3

B.	 S2-S1-S3-S4

C.	 S3-S4-S2-S1

D.	 S2-S3-S1-S4

5.	 In a data warehouse analytical database, which of the following languages is used to create,
read, update, and delete data?

A.	 SQL

B.	 C#

C.	 U-SQL

D.	 PL/SQL

Answer key

1-A 2-D 3-B 4-C 5-A

Part 2:
Relational Data in Azure

This part will provide complete coverage of the knowledge and skills required for the Skills measured
under the Describe how to work with relational data on Azure section of the exam syllabus.

In this part, you will learn about the concepts and services in Azure for implementing relational
databases in the cloud. You’ll explore service options, the provisioning and basic configuration of
these services, and how to query the data using SQL.

This part comprises the following chapters:

•	 Chapter 6, Integrating Relational Data in Azure

•	 Chapter 7, Provisioning and Configuring Relational Database Services in Azure

•	 Chapter 8, Querying Relational Data in Azure

6
Integrating Relational

Data on Azure

In this chapter, we will explore scenarios for using relational database management systems
(RDBMSs) to store transactional data on Azure in services like Azure SQL Database, Azure Database
for PostgreSQL, Azure Database for MySQL, and Azure Database for MariaDB.

Many databases currently in operation are relational, based on SQL Server, PostgreSQL, MySQL, and
others, and in general, many of them are still running in local data centers (on-premises). This chapter
will provide the fundamental knowledge you need to plan to modernize these databases for Azure
and prepare for DP-900 certification questions related to these technologies.

By the end of this chapter, you will understand the different Azure data services for relational databases,
the use case for each one, and how to choose the right relational database for your Azure project.

In this chapter, we will cover the following topics:

•	 Exploring relational Azure data services

•	 Understanding Azure databases offers

Exploring relational Azure data services
In this section, we’ll understand the characteristics of Azure relational databases, the differences
between the services that are offered, and the most common usage scenarios for each. Several database
services are supported by Azure, allowing you to run common RDBMSs in the cloud, such as SQL
Server, PostgreSQL, and MySQL.

Most Azure database services are fully managed services, allowing you to spend less time managing
your database, delivered as Platform as a Service (PaaS).

You can quickly scale an infrastructure or distribute your database across structures around the world,
without worrying about downtime, deployment, and maintenance of that entire infrastructure.

Integrating Relational Data on Azure88

Azure database services already have advanced security controls, with automatic monitoring and
threat detection, auto-scaling for increased performance if needed, automated backup, and built-in
high availability.

All these benefits are provided by database services through a Service-Level Agreement (SLA),
which defines the commitment to deliver this entire infrastructure by the cloud provider, in this case,
Microsoft Azure.

Important note
The cost of Azure database services is very varied, from free databases where the only cost is
storage to very large capacities with high cost. Understanding the cost metrics and pricing of
services is not a relevant topic for the DP-900 exam, but as this is an important subject for
your projects, I suggest you better understand the cost composition of the services by referring
directly to the pricing by product area of the Azure website:

https://azure.microsoft.com/en-us/pricing/#product-pricing

Let’s now understand the different relational database services in Azure and how to choose between
these different options.

Azure SQL

Azure offers three types of SQL Server databases. They are as follows:

Table 6.1 – Types of Azure SQL Server databases

Let’s discuss the main differences between these offers now.

https://azure.microsoft.com/en-us/pricing/#product-pricing

Exploring relational Azure data services 89

Azure SQL Database

Azure SQL Database is a PaaS service. You establish a cloud-based managed database server and then
deploy your databases to it.

Important note
An Azure SQL Database server is a logical entity that serves as an administrative hub for
multiple, single, or grouped SQL databases, user logins, firewall rules, audit rules, threat
detection policies, and failover groups.

Azure SQL Database can be used as a single database or as part of an elastic pool.

Single database

When you enable an Azure SQL Database single database, you configure a standalone SQL Server
PaaS and start using it simply and directly. All you need to do is provision the service, create your
tables, and populate them with your data, because Azure will manage all the server-side infrastructure.

If you need more storage space, memory, or compute power, you can increase these resources without
any downtime. Resources are pre-allocated by default, and you’ll be billed by the hour for those
you requested.

There is also an Azure SQL Database single database serverless option, with similar behavior, but in
this option, you will be sharing the physical server with other Azure clients, with Azure managing
the confidentiality and security side.

Important note
Serverless database options should always be carefully evaluated to identify whether requirements
are met by service resource limits. In the case of Azure SQL Database serverless, considering the
resource sharing, you may have some resources that generate latency in your database responses.
As with every serverless option, the benefit is that the database is scaled and automatically tuned.

Elastic pool

An Azure SQL Database elastic pool is a service where you can have multiple databases, sharing the
same resources such as memory, data storage space, and computing power.

Pool is a term used to describe a collection of resources, in this context, a collection of databases that
share the same Azure SQL Database cluster.

A pool is created by you in your account and can only be used by your databases, such infrastructure
being dedicated to a single customer and not shared with other Azure customers.

Integrating Relational Data on Azure90

If you have databases with resource requirements that change over time, this strategy can help you
save money.

For example, your payroll system database, uses a lot of CPU capacity on a specific date when processing
payroll for the month’s accounts closing operation. But during the rest of the month, the database has
normal behavior, with a small number of transactions.

An elastic pool allows you to use the pool resources during the processing of this heavier workload
and release them as soon as processing is finished to be used by the other databases in the pool.

Azure SQL Database is Azure’s best cost-benefit solution. It has minimal administration and is suitable
for all cloud-native solutions that will be developed from scratch in Azure. It is not fully compatible
with SQL Server on-premises deployments, so it is not usually the best option for migrations, and these
should be accommodated in Azure SQL Managed Instance, which we will look at in the next section.

Advantages of using Azure SQL database

Here are the key advantages of Azure SQL Database:

•	 Azure SQL Database is updated and fixed automatically to ensure that you are always using
the latest and most secure version of the service.

•	 With the scalability capabilities of Azure SQL Database, you can increase the resources available
to store and process data, without having to perform an expensive manual upgrade.

•	 High availability guarantees are provided by the service, ensuring that your databases are
available at least 99.99% of the time.

•	 Point-in-time restore in Azure SQL Database allows you to restore a database to the state
it was in at any point in the past. Databases can be duplicated in many locations to increase
resiliency and disaster recovery.

•	 Advanced threat prevention includes advanced security features, including vulnerability
assessments that can help you detect and fix potential database security issues.

•	 Anomaly detection is a security feature that detects anomalous behavior in database access.
This means this feature can prevent your database from being accessed by users or apps without
the proper permission. Database auditing logs can help us to investigate an event, using the
history of logs generated and stored automatically on Azure.

•	 Azure SQL Database protects your data while it is kept in the database (at rest) and while
being transported (in transit) over the network using encryption.

The Azure databases explained in this chapter, except for Azure Database for MySQL (MySQL has a
specialized open source tool called MySQL Workbench), can be managed through Azure Data Studio,
which we discussed in Chapter 2, Exploring Roles and Responsibilities in Data Domain.

Exploring relational Azure data services 91

In the following screenshot, we see an example of access to Azure SQL Database, opening databases
and tables and performing a query:

Figure 6.1 – Azure Data Studio querying Azure SQL Database

Azure Data Studio is a free and very intuitive tool for accessing Azure databases. It works with most
database services and helps a lot in the organization and governance of these records.

With it, you can configure access, perform ad hoc queries in the database, and build your objects.

Much like SQL Database’s service, but recommended for legacy SQL Server migrations, is Azure SQL
Managed Instance. Let’s look at that.

Azure SQL Managed Instance

Azure SQL Managed Instance is a PaaS version of a self-managed, intelligent, and scalable SQL Server
database of Azure. It can be configured using capability mode from older versions of SQL Server, such
as 2005, 2008, and later. This makes the service almost 99% compatible with these legacy versions of
SQL Server, ideal for existing database migrations.

Integrating Relational Data on Azure92

To maintain all PaaS administrations of the service, some limitations are found, especially in the
customization and management layers of the system operator and services of the SQL Server installation.
The limits are found because the user of this service does not have access to the virtual machine server
that SQL Server will be installed on, as in a traditional SQL Server installation.

Advantages of using Azure SQL Managed Instance

The main benefits of the Azure SQL Managed Instance service are as follows:

•	 The SQL Server version of Azure SQL Managed Instance is compatible with legacy SQL Server
versions since 2005

•	 Azure SQL Managed Instance is based on the latest version of the SQL Server software, so it
always has all the newest features of the SQL Server Enterprise version

•	 It provides a native private Virtual Network (VNet) implementation that addresses common
security concerns, such as network isolation and a private IP for the database

•	 Existing SQL Server users can use Azure SQL Managed Instance to migrate their on-the-go
applications to the cloud with minimal changes to the application and database

•	 It has PaaS features, such as automated fixes and version upgrades, automated backups, and
built-in high availability

Due to the capability mode of older versions of SQL Server, the main use case of Azure SQL Managed
Instance is existing SQL Server migration.

Now that we know about these two PaaS formats, let’s evaluate the Azure IaaS offering of SQL Server
on virtual machines.

SQL Server on virtual machines

Azure offers virtual machine images with SQL Server already installed and configured, in different
versions and architectures (Always-On cluster, Windows Server, Linux, and so on) and supports
customized installation of SQL Server environments.

When SQL Server is deployed on a virtual machine in Azure, it’s in IaaS format, meaning Azure
management is limited on the hardware and operating system infrastructure layers, and all configuration,
monitoring, updates, and customizations are the user’s responsibility.

Advantages of using SQL Server on virtual machines

Although not the most recommended format for Azure, there are some benefits to using SQL Server
for virtual machines:

•	 There is 100% compatibility with legacy applications for migrations that Azure Managed
Instance doesn’t support.

Exploring relational Azure data services 93

•	 Customizations can be made at the operating system and/or SQL Server installation level, for
example, using local users created in the operating system.

•	 There is an Azure benefits package called SQL Server IaaS Agent Registration that enables
this virtual machine to have some administration features similar to PaaS, such as automated
backup, Azure Defender for SQL Server, and SQL assessment. You can find a list of all the
benefits available at this link:

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/
windows/sql-server-iaas-agent-extension-automate-management

•	 There is portability between on-premises and other cloud platforms.

Since this option has more manual configurations and manageability tasks for DBAs, it should be used
if Azure SQL Database and Azure SQL Managed Instance do not meet your project requirements.

Important note
Azure still has Azure SQL Edge options, which is a version of SQL Server for offline data
storage on a cloud-connected device. This is a very specialized version, so it is unlikely there
will be questions about it in the DP-900 exam.

Now that we know about the different versions of SQL in Azure, let’s evaluate the open source options
that Azure also offers for relational databases.

Azure Database for MySQL

Based on MySQL Community Edition, Azure Database for MySQL is a PaaS implementation of
MySQL in the Azure cloud.

Figure 6.2 – Azure Database for MySQL is similar to MySQL Community Edition

Like Azure SQL Database, in Azure Database for MySQL, the security of a database connection is
provided by the server, which enforces restrictions via a firewall and optionally requires SSL connections.
The user can configure server settings, such as lock modes, the maximum number of connections,
and timeouts, using various server parameters.

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management

Integrating Relational Data on Azure94

High availability and scalability are included in the Azure Database for MySQL service at no additional
cost. You only pay for the services you use. Backups are done automatically and can be restored at a
specific time.

Most popular applications are built on top of the concept of LAMP (which stands for Linux, Apache,
MySQL, PHP/Perl/Python). For those applications, on Azure, the best option for a database is Azure
Database for MySQL.

Azure Database for MySQL is a worldwide database solution that lets you scale up huge databases
without having to worry about managing hardware, network components, virtual servers, software
patches, or other underlying components.

Because Azure Database for MySQL is a PaaS solution, some common open source customizations in
MySQL are not available in the service. On the other hand, security and management tasks—which
are the main concerns when we are planning a new database—are all managed by Azure in Azure
Database for MySQL.

Important note
Burstable virtual machines are a family of Azure virtual machines that have bandwidth shared by
multiple users. They’re ideal for workloads that don’t need a dedicated resource for performance
and are a good way to have a database that is more cost-effective. Burstable machines will be
discussed later in this chapter.

There are two deployment options for Azure Database for MySQL: Single Server and Flexible Server.

Azure Database for MySQL – Flexible Server

Azure Database for MySQL Flexible Server is an interesting option for those who want to have flexibility
in configuring database capacity. With this option, you can configure how the data distribution for the
high availability of data will work, in a single or multiple availability zones, and have efficient controls
to work with virtual machines such as servers in start/stop mode in burstable and dedicated formats
(General Purpose and Business Critical formats).

Azure Database for MySQL – Single Server

Azure Database for MySQL Single Server is a fully managed service database with predictable
performance and scalability and is ideal for applications that are already running on a single server.

Azure Database for MySQL comes with the following important features:

•	 Built-in high availability

•	 Performance can be predicted

•	 Scalability is simple and demand is met quickly

Exploring relational Azure data services 95

•	 Data is protected at rest and in transit with encryption

•	 Automatic backups and point-in-time restores are kept for the last 35 days

•	 There is security and legal compliance at the corporate level

•	 The pay-as-you-go pricing model ensures that you pay only for what you use

•	 The monitoring feature is available for Azure Database for MySQL, including the ability to
create alarms and view metrics and logs

In addition to MySQL, another open source database often found in relational applications is PostgreSQL.
For this reason, Azure has also prepared a managed service for it. Let’s learn about it now.

Azure Database for PostgreSQL

If you prefer PostgreSQL, you can run a PaaS implementation of PostgreSQL in the Azure cloud using
Azure Database for PostgreSQL. This service has the same MySQL capabilities in terms of availability,
performance, scale, security, and administration.

Figure 6.3 – Azure Database for PostgreSQL is similar to PostgreSQL

Some features of PostgreSQL databases in custom installations are not available in Azure Database
for PostgreSQL, so it is important to evaluate the impacts of a possible migration before considering
the service for your project.

These features are primarily based on extensions that users can install in a database to perform specific
activities, such as writing storage procedures in various programming languages (in addition to existing
pgSQL, the native language of PostgreSQL) and communicating directly with the operating system.
These extensions are very common in legacy PostgreSQL databases, such as TimescaleDB for time-
series implementations on PostgreSQL or PostGIS for spatial database needs.

The good news is that there is support for a main set of the most used extensions and the list of accessible
extensions is updated regularly by Azure. In the following link, you can find all the extensions available
on Azure Database for PostgreSQL:

https://docs.microsoft.com/en-us/azure/postgresql/single-server/
concepts-extensions

https://docs.microsoft.com/en-us/azure/postgresql/single-server/concepts-extensions
https://docs.microsoft.com/en-us/azure/postgresql/single-server/concepts-extensions

Integrating Relational Data on Azure96

There are three deployment options for Azure Database for PostgreSQL:

•	 Single Server

•	 Flexible Server

•	 Hyperscale

Let’s learn about each of them now.

Azure Database for PostgreSQL – Single Server

The Azure Database for PostgreSQL Single Server deployment option offers PaaS managed infrastructure
advantages like Azure Database for MySQL. Basic, General Purpose, and Memory Optimized are
the three types of prices available. Each layer has a varied number of CPUs, RAM, and storage sizes;
you choose one based on the expected load.

Azure Database for PostgreSQL – Flexible Server

A fully managed database service is available with the PostgreSQL Flexible Server deployment option.
It offers more power and flexibility in server configuration as well as superior cost-cutting controls.

In general, the service offers greater flexibility and server configuration adjustments based on the
needs of the user.

You can collocate the database engine with the client tier for better latency and choose high availability
inside a single availability zone or across many availability zones thanks to the Flexible Server architecture.

With the option to stop/start your server and a burstable virtual machine, flexible servers offer superior
cost optimization controls.

The PostgreSQL 11, 12, and 13 Community versions are now supported by Azure Database for
PostgreSQL – Flexible Server.

Flexible Server is ideal when the following are required:

•	 Better control and adaptations, which are required for application development

•	 High availability zone redundancy

•	 Maintenance windows that are well managed

Azure Database for PostgreSQL – Hyperscale (Citus)

Hyperscale (Citus) is a deployment option for large database loads that scales queries across multiple
server nodes. Your database is distributed across multiple nodes. The value of a partition key is used
to divide the data into parts. You can consider using this deployment option for the large PostgreSQL
database deployments of the Azure cloud.

Exploring relational Azure data services 97

The Azure PostgreSQL service has some very interesting points that can justify its use:

•	 The SLA is 99.99%, with built-in high availability.

•	 It has integrated failover and fault detection methods.

•	 The pgAdmin tool, which can be used to manage and monitor a PostgreSQL database, is
familiar to PostgreSQL users.

•	 Azure Database for PostgreSQL saves information about queries that run on the server databases
in the azure_sys database. You can see this information by querying the store.qs query
view, which can be used to track queries that users are executing.

A newer database, but one that has been considered in some modern application scenarios, is MariaDB.
Let’s evaluate the Azure Database for MariaDB service now.

Azure Database for MariaDB

Azure Database for MariaDB is a MariaDB database management system that has been converted
to run on Azure. It uses MariaDB Community Server as the foundation, but has all the benefits of a
PaaS database on Azure.

MariaDB is a very scalable database and has architectural similarities to MySQL. This means that
migration between these two databases is simple, and you can choose what will be suitable for your
use case.

Figure 6.4 – Azure Database for MariaDB and the MariaDB open source

The primary use case for this service is database migrations to Azure, from on-premises MariaDB,
PostgreSQL, or Oracle Database.

Azure manages and controls the database completely. The system requires almost no additional
administration after you provision the service and transfer your data.

Azure Database for MariaDB provides the following features:

•	 High availability is incorporated at no extra cost

•	 Predictable results can be obtained with all-in-one pay-as-you-go prices

Integrating Relational Data on Azure98

•	 In seconds, you can increase or decrease the compute resources as needed

•	 Sensitive data is protected both at rest and in transit

•	 Up to 35 days of automatic backups and point-in-time restore can be configured

•	 There are security and compliance controls at the enterprise level

Now we’ve listed all the relational databases available in Azure. In the next chapter, we’ll start provisioning
jobs in Azure, so get ready.

To finish up this chapter, we will evaluate use cases for the databases we have covered thus far in
this chapter.

Use cases
An RDBMS uses SQL as its default language. In general, use cases that can be applied to Azure SQL
Database can also be applied to Azure Database for MySQL, PostgreSQL, and MariaDB, depending
on which technology you want to use or what your application has already been developed on.

Therefore, instead of showing use cases of each of these technologies, in this section, I will present
the reasons for opting for Azure SQL Database.

Important note
Whether you use a SQL or NoSQL database for a particular use case is one of the most important
questions for a data architect. You will complete your knowledge in Chapter 9, Exploring Non-
Relational Data Offerings in Azure, where we will discuss Azure NoSQL databases and list the
main reasons for using a NoSQL database.

The big difference between a relational database and a non-relational database is the schema definition,
which is defined at the beginning of the project on the relational database.

Before you start using INSERT statements on your database tables, it is necessary to run a CREATE
TABLE query, with columns set to the appropriate data type, and then that database will be prepared
to stop receiving the data.

Defining this schema at the beginning of the project enables relational databases to be more easily
documented and governed in an enterprise structure.

But that’s not the only reason why they are the most widely used databases on the market. We can
also list the following advantages:

•	 A few years ago, they were unique in the market, with the large presence of Microsoft SQL
Server, Oracle Database, MySQL, and PostgreSQL, which means that many applications were
created using these databases and continue to work only with these systems

Summary 99

•	 They are highly reliable and stable, and this is proven by critical business applications such as
large ERPs and CRMs, among other applications

•	 They follow a standard that works well with major software stacks, such as LAMP

•	 They’ve been in use for over 40 years, making many professionals specialized in this type of
database and SQL, facilitating implementation and support

•	 They are ACID compliant by default

•	 They provide the best support options for enterprise-level projects

Now, let’s evaluate the disadvantages, which may sway your choice in favor of using a NoSQL database:

•	 There are sharding and scalability challenges because they are databases that have several
routines that run even before database transaction operations begin. This causes these databases
to initially consume more resources than a NoSQL database.

•	 There is low efficiency with blob. Even for databases that have this data type, it is much better
to store a JSON document, for example, in a NoSQL database than in a binary or BLOB column.

With this knowledge, you are prepared to start configuring relational databases in Azure and exploring
the capabilities of the SQL language. This will be our focus in Chapter 8, Querying Relational Data in
Azure, but first, we will review what we learned in this chapter and evaluate a few simulated questions
from the DP-900 test.

Summary
In this chapter, we learned that Azure offers great options for relational databases in the PaaS format,
such as Azure SQL, Azure Database for MySQL, Azure Database for PostgreSQL, and Azure Database
for MariaDB, and enables custom installation of other types of databases in IaaS format.

We understood the key differentials of Azure relational databases and features that are common in
all offerings, such as built-in high availability, high scalability, auto-backup and point-in-time restore,
and encryption of data at rest and in transit, among others.

It’s important to evaluate your project requirements, primarily in the migration of existing applications,
to identify the best service option in Azure.

In the next chapter, we’ll work through the provisioning and basic settings of a relational database
in Azure.

Integrating Relational Data on Azure100

Sample questions and answers
The following are some questions and answers that simulate the DP-900 test on Azure relational
database services:

1.	 Which of the following is a built-in feature of SQL databases?

A.	 Cross-cluster copies

B.	 Dashboards and reports

C.	 High availability

D.	 Analytical database

2.	 Which of the following systems is not an Azure database type?

A.	 MongoDB

B.	 MariaDB

C.	 MySQL

D.	 PostgreSQL

3.	 Which version of Azure PostgreSQL best fits an 80 TB database?

A.	 Hyperscale

B.	 Single Server

C.	 Flexible Server

D.	 Serverless

4.	 You must migrate a legacy application running SQL Server 2008 on-premises to Azure. Which
Azure service will you analyze first for this migration?

A.	 Azure SQL Managed Instance

B.	 SQL Server on virtual machines

C.	 Azure SQL Database

D.	 Azure Database for MySQL

Answer key

1-C, 2-A, 3-A, 4-A

7
Provisioning and

Configuring Relational
Database Services in Azure

Now that we’ve met Azure relational database services in the previous chapter, let’s explore how to
provision and configure the Azure relational database services: Azure SQL Database, Azure Database
for PostgreSQL, and Azure Database for MySQL.

This is the chapter where we begin the action! We are going to delve into the implementation in Azure,
so it’s time to sit in front of the computer, put your book on the table, and follow the steps.

By the end of this chapter, you will be able to understand how to provision the Azure relational database
services and the basic configurations around these databases.

In this chapter, we will cover the following topics:

•	 Provisioning relational data services

•	 Configuring relational data services

Technical requirements
This is your first chapter with hands-on exercises. To explore the services in this chapter, the following
is required:

•	 A computer with Windows 10 (or a newer OS) and internet access

•	 An active Azure account (http://www.azure.com)

•	 Access to the book’s code repository on GitHub (https://github.com/
PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-
Exam-DP-900-Certification-Guide)

http://www.azure.com
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide

Provisioning and Configuring Relational Database Services in Azure102

Important note
At this time, if you don’t already have an Azure account, you can create a free account that will
give you $200 of Azure credits to run your tests for 30 days. After this period, you still have
access to more than 40 free services, some without a certain deadline, some for 12 months.
Among these services are some of the databases seen in this chapter. You can read the complete
list of free Azure services that you get here: https://azure.microsoft.com/en-us/
free/search/.

If this is your first interaction with a cloud computing environment, follow these tips to avoid incurring
costs that you have not planned for:

•	 All services we will use must be instantiated in their smaller formats, thereby maximizing the
number of Azure credits we will use.

•	 Everything in cloud computing has some kind of billing metric – after all, it is an on-demand
computing service.

•	 While not using a service, go to the settings of this service and look for and select the Stop or
Pause option, and when you need to use it again, click Run. This way, you will only consume
credit for the time that you are doing your exercises.

•	 When we create our free trial account, we need to add a credit card to validate the account,
but Azure won’t automatically charge your credit card for your Azure consumption. When
your free credits run out, you’ll receive a message asking whether you plan to activate credit
card payment or not.

With your Azure environment ready, let’s start our hands-on exercises.

Provisioning relational Azure data services
In this section, we’ll explore the characteristics of Azure relational databases, the differences between
the services that are offered, and the most common usage scenarios for each.

First of all, let’s access the Azure portal: http://portal.azure.com.

Now let’s look at the provisioning of the main Azure relational database services.

Provisioning Azure SQL Database

The following is the home page of the Azure portal, and in it, we already have access to the category
of products such as SQL databases, SQL servers, and Azure Synapse Analytics, among others:

https://azure.microsoft.com/en-us/free/search/
https://azure.microsoft.com/en-us/free/search/
http://portal.azure.com

Provisioning relational Azure data services 103

Figure 7.1 – Azure admin portal home page

Let’s move on to the step-by-step Azure SQL Database provisioning:

1.	 In the Azure portal, go to the Azure SQL session, which you will find in the hidden menu on
the left-hand side (click on the three dashes in the top-left corner for the menu to appear) or
by searching in the top bar of the portal or shortcut, which by default, is present on the home
page. After accessing it, a page will open as follows:

Provisioning and Configuring Relational Database Services in Azure104

Figure 7.2 – The Azure SQL page on the Azure admin portal

2.	 Then, click +Create to open the SQL database type selection page you would like to create:

Figure 7.3 – Select SQL deployment option page

Provisioning relational Azure data services 105

Note
On this page, you can create SQL databases and SQL-managed instances; two Azure database-
managed services – in the Platform-as-a-Service (PaaS) format – and virtual SQL machines, which
are virtual machines running SQL Server – in the Infrastructure-as-a-Service (IaaS) format.

For this exercise, we will choose SQL databases | Single database and then click Create to go to the
following page:

Figure 7.4 – Create SQL database page

Provisioning and Configuring Relational Database Services in Azure106

3.	 Fill out the form as follows:

	� Subscription: Select your subscription name

	� Resource group: You can create a resource group or use one that you already have in
this subscription

	� Database name: coredb

	� Server: In this section, use the Create new button to open the following page:

Figure 7.5 – Create SQL Database Server page

Provisioning relational Azure data services 107

The following are the database settings. We will use these settings in later chapters to connect
and explore this database:

	� Server name: coredba

	� Location: (US) East US

	� Authentication method: Use SQL authentication

	� Server admin login: administrador

Important note
Azure reserves some words, such as administrator, admin, and others, to avoid security issues.
That’s why I have used administrador (which is the word for administrator in Portuguese). In
your projects, you can use something such as admin2022 and similar variations for creating
the admin login, but to make sure you follow all the exercise steps, please use administrador
for this example.

	� Password: Pass@word#123

When you confirm your settings, the page will return the following:

	� Want to use SQL elastic pool?: No

	� Compute + storage: Gen5, 2 vCores, 32 Gb storage, zone redundant
disabled

	� Backup storage redundancy: Locally redundant backup storage

After you finish, click Next: Networking >.

4.	 To give your computer access to this server, you need to configure the following settings in
the Networking tab:

	� Connectivity method: Public Endpoint

	� Add current client IP address: Yes

Important note
All Azure databases have firewalls that control user and system access to the database’s instances.
This setting will add your personal computer’s IP to a firewall rule.

Move on by clicking the Next: Security > button.

Provisioning and Configuring Relational Database Services in Azure108

5.	 In the Security session, we will only adjust one item:

	� Enable Microsoft Defender for SQL: Not now

Then, click Next: Additional settings >.

In the Additional settings session, we will not change any items, but it is interesting to note
that Azure SQL Database provides options to automatically restore an existing Backup or to
populate a database with Sample or None data (as in, an empty database).

Another important session is the collation configuration, which can also be done on this screen.

Click the Next: Tags > button.

6.	 We won’t add tags now using this feature, so we can already move on and click Next: Review
+ create >. The portal will summarize all our settings, validate whether anything is missing,
and then allow us to click on the Create button.

Now, just wait for the Azure processes page that shows us the execution process and informs
us when it’s available to use!

Important note
We won’t cover all the details of Azure SQL Database settings in this book because they are
not required for the DP-900 certification, but if you’re building a production environment
on Azure, it’s important to evaluate each of the settings for a better service usage experience,
especially network and security items.

After finishing the creation, click Go to resource to be directed to the settings page of the new
SQL database:

Provisioning relational Azure data services 109

Figure 7.6 – SQL database configuration page

It’s ready. Your SQL database is already provisioned, and you can now start configuring access to this
new database.

Now, let’s look at the other possibilities for transactional databases. Let’s evaluate Azure database
provisioning for PostgreSQL and MySQL.

Provisioning and Configuring Relational Database Services in Azure110

Provisioning Azure Database for PostgreSQL and MySQL

Azure Database for PostgreSQL and Azure Database for MySQL provisioning work similar to Azure
SQL Database. For this reason, this provisioning will be less detailed. Let’s move on to provisioning
Azure Database for PostgreSQL:

1.	 In the Azure portal, look for the Azure Database for PostgreSQL servers button. You might
have to use the search bar at the top or browse the items in the All services pane until you
find the following page:

Figure 7.7 – Azure Database for PostgreSQL servers page

2.	 After clicking +Create in the Azure Database for PostgreSQL service, you are redirected to the
deployment options page as follows:

Provisioning relational Azure data services 111

Figure 7.8 – Azure Database for PostgreSQL deployment option page

3.	 In this step, you can select from the four options that we discussed in the previous chapter:

	� Flexible server

	� Single server

	� Hyperscale (Citrus) server group

	� Azure Arc enabled PostgreSQL Hyperscale (Preview)

Let’s select Flexible server and click Create:

Provisioning and Configuring Relational Database Services in Azure112

Important note
Azure Arc enabled PostgreSQL Hyperscale (Preview) will not be covered in this book, as
this is a service that is not yet in its final version (GA – General Availability) and is therefore
not recommended for Azure productive environments and is not required in certification tests
such as the DP-900.

4.	 In the creation form, use the following settings:

	� Subscription: Select your subscription name.

	� Resource group: You can create a resource group or use one that you already have in
this subscription.

	� Database name: pgdbflex

	� Region: East US

	� PostgreSQL version: 13

	� Workload type: Development.

	� Compute + storage: We don’t need to change it. Because Workload type is Development,
Azure already understands that it will be a small configuration for testing.

	� Availability zone: No preference

	� Enable high availability: No

	� Admin username: coredb

	� Password: Pass@word#123

	� Confirm password: Pass@word#123.

This page has a real-time cost estimation feature, depending on your settings, which helps a
lot with decision-making. The following is a screenshot:

Provisioning relational Azure data services 113

Figure 7.9 – Azure Database for PostgreSQL deployment configuration page – estimated costs

Now, you can click Next: Networking >.

Provisioning and Configuring Relational Database Services in Azure114

5.	 In Networking, the only change needed is to add your IP in a release rule in the firewall. For
this, the page already suggests a + Add current client IP address link. Click this link to add it
and then you can go straight to the Review + create button.

After reviewing your configurations, you are ready to click Create and wait a few minutes.

Creating Azure Database for MySQL follows exactly the same pattern, only swapping PostgreSQL
for MySQL.

However, in step 2 of this walkthrough, you will only have the Flexible server and Single
server options as follows:

Figure 7.10 – Azure Database for MySQL deployment option page

The other steps are very similar to Azure Database for PostgreSQL provisioning, but I invite you to
do an Azure Database for MySQL deployment as well, so you can experience that and are able to use
it in future projects.

Now that we’ve created relational databases in Azure, let’s explore the most important settings for
each of these databases.

Configuring relational databases on Azure
After provisioning Azure database services, some basic configuration operations must be performed
before starting database usage.

Configuring relational databases on Azure 115

In this section, we will evaluate the PaaS features of Azure databases that assist us in these configurations.
To do this, we will use the Azure SQL Database instance provisioned from this chapter, but we have
similar features on Azure Database for PostgreSQL and MySQL.

Configuring Azure SQL Database

To follow along, return to the Azure portal and search for the Azure SQL Database service instance
provisioned at the beginning of this chapter.

As soon as you access the service, you will see a side menu with all the settings for this Azure SQL
Database service instance, plus a summary with the most relevant information and graphics that
demonstrate its behavior, as shown in the following screenshot:

Figure 7.11 – SQL database configuration page

Provisioning and Configuring Relational Database Services in Azure116

Let’s evaluate the basic settings that must be performed in databases in Azure step by step.

Access Control – Access control to your database is one of the first settings to configure and this
setting always raises questions. Do you remember that we added a rule to the firewall so that your
computer could access the service? This is a prerequisite, but your user may not have access to the
database. Another relevant fact is that user access is not configured at the coredb database level
but the server level.

To access the server, you can click the coredba.database.windows.net link below Server Name and
the coredba server settings page will open:

Figure 7.12 – SQL database – SQL server configuration page

Configuring relational databases on Azure 117

This page contains some properties at the SQL server level, one of which is Access Control (IAM)
in the left-hand menu on the screen, as seen in Figure 7.13. On this page, you can add users from
your corporate network (if it is connected to Azure) to access this database and create and configure
custom access roles, among other features:

Figure 7.13 – SQL database – Access control (IAM) page

Provisioning and Configuring Relational Database Services in Azure118

Backups – Another super important configuration at the beginning of using this service is the
configuration of the Available backups and Retention policies routines for your databases, as seen
in Figure 7.14. Access Backups from the left-hand menu and evaluate these settings before you start
using the database:

Figure 7.14 – SQL database – Backups page

Configuring relational databases on Azure 119

As you can see in the preceding screenshot, you have control over when each of the backups is performed,
whether it is scheduled correctly, or whether you need some extra settings.

These are some of the most important Azure database configuration operations at the beginning of
your Azure project and for the DP-900 certification test. Other settings you should explore a bit more
are as follows:

•	 Security > Networking – Primarily, access release settings are only for internal networks or
public networks, and firewall rules settings are for releasing the connection to IPs

•	 Security > Microsoft Defender for Cloud – A security tool that helps you perform the best
security risk mitigation settings

Now that we know the particularities of Azure SQL Database, let’s understand the details of the Azure
Database for PostgreSQL and MySQL settings in the next section.

Configuring and managing Azure Database for PostgreSQL and
MySQL

The configurations and administrative operations of Azure Database for PostgreSQL and Azure
Database for MySQL are almost the same. What differs most from Azure SQL Database is that in these
services, the Server object is not logically separated in Azure – that is, you configure and administer
each instance in the Azure Database for MySQL and Azure Database for PostgreSQL sessions.

To follow these explanations, it is recommended that you go back to the Azure Database for PostgreSQL
or Azure Database for MySQL created in Chapter 6, Integrating Relational Data on Azure, to identify
the most important sections explained here and the extra configuration possibilities.

Backups – The Backups feature has a different look and feel, but the functionality is very similar to
that of Azure SQL Database. You can configure your automated backup in the Compute + storage
section as shown in the following figure, and during your configurations, you can estimate how much
this backup will cost:

Provisioning and Configuring Relational Database Services in Azure120

Figure 7.15 – Azure Database for MySQL – Backup retention configuration

With this knowledge, you are already prepared to start using relational databases in your Azure projects,
but how to make the connection, create tables, and explore the data, among other operations? We’ll
look at all of this in the next chapter.

Summary
Azure databases, including SQL, PostgreSQL, and MySQL, are enterprise-scale managed database (or
PaaS) infrastructures. They can be used in enterprise applications of any size.

In this chapter, we began to put our knowledge into practice by navigating the Azure services of
relational databases and seeing how to provision and configure these services.

Sample questions and answers 121

In our next chapter, we will connect these databases and perform the most important operations of
the SQL language, but before that, we will evaluate some possible questions about this content in the
DP-900 certification.

Sample questions and answers
Try answering the following questions to test your knowledge:

1.	 Which type of database is Azure Database for PostgreSQL?

A.	 PaaS

B.	 IaaS

C.	 Microsoft SQL Server

D.	 On-premises

2.	 Relational data is stored in…:

A.	 A filesystem as unstructured data

B.	 A hierarchal folder structure

C.	 A tabular form of rows and columns

D.	 Comma-separated value (CSV) files

3.	 Select the option that best completes the sentence:

A(n) ____________ contains keys built from one or more columns in the table or view.

A.	 procedure

B.	 field

C.	 index

D.	 view

4.	 You plan to deploy a PostgreSQL database to Azure. Which hosting model corresponds to the
available deployment options?

A.	 PostgreSQL on Azure VM (PaaS) and Azure Database for PostgreSQL (SaaS)

B.	 PostgreSQL on Azure VM (SaaS) and Azure Database for PostgreSQL (PaaS)

C.	 PostgreSQL on Azure VM (IaaS) and Azure Database for PostgreSQL (PaaS)

D.	 PostgreSQL on Azure VM (PaaS) and Azure Database for PostgreSQL (IaaS)

Provisioning and Configuring Relational Database Services in Azure122

5.	 Your Azure project will use an Azure Database for MySQL instance. The service has already been
provisioned, but the DBA of the project is not able to access MySQL via MySQL Workbench,
even after entering the username and password of the administrator of the database. What
may be missing?

A.	 Adding the DBA user to the database’s access control

B.	 Adding the DBA computer’s IP to a rule in the firewall of Azure Database for MySQL Server

C.	 Setting up a database access VPN to the local infrastructure of the DBA computer

D.	 Enabling the user in Azure Active Directory

Answer key

1-A 2-C 3-C 4-C 5-B

8
Querying

Relational Data in Azure

In this chapter, you’ll learn more about Structured Query Language (SQL), and how you can use it
to query, insert, update, and delete data in a relational database.

Now that we have touched on the provisioning of Azure relational databases in the previous chapter,
we are ready to explore the structures and data using SQL in these relational databases. This chapter is
important for all professionals who will work with data in the market because SQL is most commonly
used in relational, non-relational, and analytical databases.

SQL is fundamental for data professionals, and in the DP-900 exam, there are some questions directly
related to SQL performing operations.

By the end of this chapter, we will cover the following:

•	 Introducing SQL on Azure

•	 Querying relational data in Azure SQL Database

•	 Querying relational data in Azure Database for PostgreSQL

Technical requirements
The SQL commands are available in this book’s GitHub repository for you to follow alongside this
chapter: https://github.com/PacktPublishing/Microsoft-Certified-Azure-
Data-Fundamentals-Exam-DP-900-Certification-Guide.

https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide

Querying Relational Data in Azure124

Introducing SQL on Azure
We established from the previous chapters that SQL is used in several types of databases in Azure. Of
these, we will use Azure SQL Database and Azure Database for PostgreSQL in this chapter

SQL is used in other Azure database offerings, such as Azure Cosmos DB and Synapse Analytics,
which we’ll explore in Chapters 10, 12, and 13 of this book on NoSQL and analytical databases. The
knowledge generated by this chapter will be important for your projects with all databases on Azure.

Important note
This is a continuation of Chapter 7, Provisioning and Configuring Relational Database Services
in Azure, where we’ll use the databases that were deployed in it. You’d need to provision the
databases from that chapter to follow the exercises in this chapter.

Let’s now explore different SQL scenarios applied to Azure’s core relational database services, starting
with Azure SQL Database.

Querying relational data in Azure SQL Database
Let’s now explore the Azure SQL Database created in Chapter 7, Provisioning and Configuring Relational
Database Services in Azure, executing the SQL statements. To follow the exercise, you must follow
these steps:

1.	 Navigate to the Azure portal in your browser using the following link: https://portal.
azure.com/.

2.	 Browse to the SQL databases option, as shown in Figure 8.1:

https://portal.azure.com/
https://portal.azure.com/

Querying relational data in Azure SQL Database 125

Figure 8.1 – SQL databases on the Azure portal home page

3.	 Under the Server category, select the coredb database that we created in Chapter 7, Provisioning
and Configuring Relational Database Services in Azure, as shown on the following screen:

Querying Relational Data in Azure126

Figure 8.2 – SQL databases coredba configuration page

4.	 Next, you would need to select the Connect with… drop-down menu, as shown in Figure 8.3,
and select Azure Data Studio:

Figure 8.3 – SQL databases – Selecting Azure Data Studio from the drop-down list of Connect with...

Querying relational data in Azure SQL Database 127

5.	 At this point, the Azure portal will give you the option to open Azure Data Studio if you already
have it installed on your computer, or to download it. If you do not already have it installed, I
recommend that you download it and follow the installation instructions.

6.	 Once you have Azure Data Studio on your computer, go back to the portal and click Launch
it now:

Figure 8.4 – The launch of Azure Data Studio

When Azure Data Studio opens, it will ask whether you want to establish this new connection. Next,
confirm it and proceed to open the connection configuration setup page, as seen in the following screenshot:

Querying Relational Data in Azure128

Figure 8.5 – Azure Data Studio connecting to coredb

Note
To open this new connection page from the home page of Azure Data Studio, you can click on
the New Connection button.

7.	 In the connection details, fill in the username with administrador and the password with
Pass@word#123, as we set up in Chapter 7, Provisioning and Configuring Relational Database
Services in Azure, and click Connect.

Querying relational data in Azure SQL Database 129

Important note
Azure reserves some words such as administrator, admin, and others, to avoid security issues.
That’s why I have used administrador (which means administrator in Portuguese). In your
projects, you can use something such as admin2022 and variations of this kind for creating
this admin login, but to make sure you follow all the exercise steps mentioned in this book,
use administrador.

In this step, you may have problems establishing your connection, so let’s evaluate common connection
issues with Azure databases.

Common connection issues

If you find a problem with this connection, the most normal causes are as follows:

	� Network restriction – This is the most common problem! Make sure your IP is released
in the Azure SQL Database firewall by reviewing the steps in the Provisioning Azure SQL
Database section in Chapter 7, Provisioning and Configuring Relational Database Services
in Azure. If the problem persists, it can be a restriction on your personal computer, such as
a network proxy or some other type of connection filter.

	� Username and password – If you have configured the service with another username and
password, you will need to remember them at this time. If this occurred and you forgot them,
you can delete your database and go back to the Provisioning Azure SQL Database section
in Chapter 7, Provisioning and Configuring Relational Database Services in Azure, and revise
the configurations of your Azure SQL Database. For security reasons, it is not possible to
retrieve an administrator password, so if your authentication is not working and you don’t
know the exact username and password, it’ll be better to delete this instance and create a
new Azure SQL Database instance.

Okay, now we’re connected, and we can already evaluate the objects that this database has. At the
moment, all folders on the left side should be empty, as shown in the following screen:

Querying Relational Data in Azure130

Figure 8.6 – Azure Data Studio – coredb connected

Now, it’s time to start building our Azure SQL Database. To do this, let’s use a schema from a
student database.

This simple relational database will receive data from students enrolled in courses, relating to a table
of courses.

Let’s go step by step.

Creating tables in an Azure SQL Database

To start, click on New | New Query or use the Ctrl + N shortcut on your keyboard. A blank block of
text will be created so that you can write your queries and execute them.

Querying relational data in Azure SQL Database 131

Go to the book’s GitHub repository (https://github.com/PacktPublishing/Microsoft-
Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/
tree/main/Chapter08), open the Chapter8.sql file, and copy the SQL script under //STEP
1 and click on the Run button, as follows:

Figure 8.7 – Azure Data Studio – query execution

Let’s discuss this action in detail:

•	 As we can see in the selection box at the top of the screen, we are connected to the coredb
database (if it’s not selected in your session, you can change the connection to coreDB).

•	 Our structure is creating a table called student_data in the database.

•	 Within this table, we will have seven columns:

	� studentID – The numeric (integer) data type (int) is the primary key of this table
(PRIMARY KEY) and cannot accept null values (NOT NULL)

	� student_name – Text data type with a maximum of 30 characters (varchar(30))

	� gender – Text data type with a maximum of one characteristic (VARCHAR(1))

	� course – Data type: integer numeric values (int)

	� marks – Data type: floating numeric values (float)

	� fees – Data type: integer numeric values (int)

	� admission_year – Data type: integer numeric values (int)

https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter08
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter08
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter08

Querying Relational Data in Azure132

This is the basis for creating any table in Azure SQL Database. You have several different data types
to specialize the contents of each column.

For SQL Database, the available data types are as follows:

•	 Exact numeric types – bigint, numeric, bit, smallint, decimal, smallmoney,
int, tinyint, money, and approximate numerics such as float and real

•	 Date and time – date, datetimeoffset, datetime2, smalldatetime, datetime,
and time

•	 Character strings – char, varchar, and text

•	 Unicode character strings – nchar, nvarchar, and ntext

•	 Binary strings – binary, varbinary, and image

•	 Other data types – cursor, rowversion, hierarchyid, uniqueidentifier,
sql_variant, xml, and spatial geometry types

Tip
The full list of available data types on Azure SQL Database is always up to date in the Microsoft
Transact-SQL document: https://docs.microsoft.com/en-us/sql/t-sql/
data-types/data-types-transact-sql.

Based on the same syntax, we will now create the second table in our database, the course table.

For the next step, from the same Chapter8.sql file, copy the SQL script //STEP 2, and click on
Run to create our second table, course:

Figure 8.8 – Azure Data Studio – Execution message window

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

Querying relational data in Azure SQL Database 133

Altering table schemas in an Azure SQL Database

To explore more SQL commands, from the same Chapter8.sql file, copy the SQL script //STEP
3, paste it into Azure Data Studio, and click on the Run button.

The ALTER TABLE query is used to alter the schema of the table, including adding columns, removing
columns, changing data types, and so on. After executing this command, the course table has one
more column, called course_startdate.

You can see this new column navigating through the table structure in the left-hand menu of Azure
Data Studio. If it doesn’t appear, right-click on the connection of your Azure SQL Database and
then Refresh.

Deleting table schemas in an Azure SQL Database

Next, we will copy the script under //STEP 4 from the Chapter8.sql file and click on the Run
button in Azure Data Studio.

The DROP TABLE statement is used to delete a table from an Azure SQL Database.

After this operation, check the left side menu of Azure Data Studio, refresh it, and the course table
should no longer appear.

DROP TABLE is a widely used operation of a CREATE TABLE script, used to make sure that this
table does not exist in the database in question.

But we’re going to use our table to perform the next operations, so let’s recopy the script under //STEP
1 from the same Chapter8.sql file and click on the Run button.

Inserting data into Azure SQL Database

Now, let’s add some data to the tables. To do this, copy the SQL script under //STEP 5 from the
Chapter8.sql file, as shown here, and click on the Run button:

Querying Relational Data in Azure134

Figure 8.9 – Azure Data Studio – insert execution

Now that the tables have data, let’s perform the queries on these entities.

Selecting data from Azure SQL Database

Now let’s explore the data, using the SELECT statement to query the student_data table. To do
this, you can write the complete statement, or right-click on the table name on Azure Data Studio and
click on the Select Top 1000 button to create the query automatically as follows, or copy the script
under //STEP 6 from the Chapter8.sql file:

Querying relational data in Azure SQL Database 135

Figure 8.10 – Azure Data Studio – Select Top 1000 table execution

The Select Top 1000 button will generate a SQL statement considering the SELECT TOP (1000)
records in that table.

Now, let’s extend this SELECT statement by joining both tables together. This will show us the
relationship between these two tables using the SELECT and JOIN statements. We will join the
student_data table, using its course ID in correlation with the course ID of the course table.
To do this, we can complement the script with the INNER JOIN command, as you can copy from
the script under //STEP 7 from the Chapter8.sql file:

Querying Relational Data in Azure136

Figure 8.11 – Azure Data Studio – select joint tables execution

With this complete statement, your results will be connected, joining the records from student_data
and course in a single table or result set.

Tip
The result set is the name used for the table generated by a query execution, considering the
columns, records, and metadata related to this data.

So, in this way, you can explore more possibilities for creating tables, adding data, and selecting data
relating to tables.

Now that we’ve explored Azure SQL Database, let’s do our next exercise in Azure Database for PostgreSQL.

Querying relational data in Azure Database for PostgreSQL 137

Querying relational data in Azure Database for
PostgreSQL
To complement our exploration of Azure relational database offerings, in this section, we will use
Azure Database for PostgreSQL to test some SQL scripts.

For the DP -900 exam, it is important to study not only Azure SQL Database but also Azure Database
for PostgreSQL and Azure Database for MySQL, as both are included in the exam questions. As
mentioned earlier, Azure Database for PostgreSQL and Azure Database for MySQL are Azure offerings
that are very similar in configuration, and both use SQL, so it is important to examine at least one of
these two options.

Note
If you’re interested in developing your projects with Azure Database for MySQL, this chapter
can help you, as the PostgreSQL configuration processes are the same as MySQL, except for the
administration tool we use. In the case of PostgreSQL, the administration tool that we use is
Azure Data Studio, and for MySQL, it is necessary to use the official MySQL tool, Workbench,
which can be found at this link: https://dev.mysql.com/downloads/workbench/.

The first step to start our Azure Database for PostgreSQL exploration is to return to the Azure portal
home page (http://portal.azure.com).

Now, let’s search for the Azure Database for PostgreSQL servers section in the portal and access it,
as follows:

Figure 8.12 – Azure portal – Azure Database for PostgreSQL servers page

https://dev.mysql.com/downloads/workbench/
http://portal.azure.com

Querying Relational Data in Azure138

Connecting to Azure Database for PostgreSQL

Click on the pgdbflex database, created in Chapter 7, Provisioning and Configuring Relational
Database Services in Azure of this book, to access its settings.

In this settings screen, you will not see the Connect button that Azure SQL Database has. To connect
to Azure Database for PostgreSQL, you need to copy the connection settings present on this screen
and then paste them into your administration tool:

Figure 8.13 – Azure Database for PostgreSQL configuration page

The connection information is as follows:

•	 Server name – Can be found on the settings home page as shown in the preceding screenshot

•	 Username and Password – You need to remember the password of the admin login or other
database user

Important note
To manage PostgreSQL databases on Azure Data Studio, you need to install a PostgreSQL
extension, available for free on the Azure Data Studio documentation website.

Querying relational data in Azure Database for PostgreSQL 139

Installing the Azure Data Studio extension for PostgreSQL is simple and can be found in this
EXTENSIONS section in Azure Data Studio itself:

Figure 8.14 – Azure Data Studio extension for PostgreSQL

Install this extension to follow with the connection.

Navigate to the CONNECTIONS section and select the New Connection button. Once you sign in
to New Connection, just fill in the information. As you can see, you have two options in Connection
type: SQL Server or PostgreSQL.

The username is administrador and the password is Pass@word#123, as we set up in Chapter 7,
Provisioning and Configuring Relational Database Services in Azure. When you have filled in the
information, click on Connect, as follows:

Querying Relational Data in Azure140

Figure 8.15 – Azure Data Studio – New Connection form

If you encounter an issue with this connection, return to the Azure SQL Database connection in the
Common connection issues section of this chapter, where I gave some tips on the most common issues.

Querying Azure Database for PostgreSQL

Now, browse the objects of your PostgreSQL server, go to the postgres database, and right-click
to find the New Query option:

Querying relational data in Azure Database for PostgreSQL 141

Figure 8.16 – Azure Data Studio – PostgreSQL New Query

The query window will open, and you can start writing your instructions as we did with Azure
SQL Database.

Now, open again our source code available in this book’s GitHub repository, and let’s create the tables,
insert data, and perform queries.

Open the Step 4 POSTGRESQL and Step 5 POSTGRESQL files, and copy the script to the
Azure Data Studio notebook windows (on the right). After that, click on Run.

You are using a different file from the Azure SQL Database because the syntax of PostgreSQL is a little
different from the SQL Server. It happens with all different SQL relational databases; they have the
same logical basis but require some changes to the SQL syntax.

Querying Relational Data in Azure142

The query will give the following output:

Figure 8.17 – Azure Data Studio – PostgreSQL Query execution

Now, we’ve already explored the use of the two main Azure relational databases, SQL Database and
Database for PostgreSQL.

As I mentioned earlier, the scripts to use in Azure Database for MySQL are very similar to Azure
Database for PostgreSQL scripts, but at the time of connection, you will use the open source tool
MySQL Workbench to perform your SQL scripts, instead of Azure Data Studio.

Summary 143

Summary
Relational databases are most widely used in the market for transactional work. Mastering one of the
services with Azure SQL Database will give you the basis to implement other formats, such as Azure
Database for PostgreSQL and MySQL.

In this chapter, we have looked at the connection of these databases in a simplified but sufficient way
for you to start your projects and for the DP-900 certification questions.

In the next chapter, we will start Part 3 of this book, and Chapter 9, Exploring Non-Relational Data
Offerings in Azure will explore non-relational databases on Azure.

Sample questions and answers
Try answering the following questions to test your knowledge:

1.	 Which administrative tool is used in Azure Database for MySQL?

A.	 MySQL Workbench

B.	 Azure Data Studio

C.	 SQL Management Studio

D.	 The Azure CLI

2.	 Which database service is the simplest option for migrating a LAMP application to Azure?

A.	 Azure SQL Database

B.	 Azure Database for PostgreSQL

C.	 Azure Database for MySQL

D.	 Azure Cosmos DB

3.	 You need to modify a view in a relational database by adding a new column. Which statement
should you use?

A.	 MERGE

B.	 ALTER

C.	 INSERT

D.	 UPDATE

Querying Relational Data in Azure144

4.	 Matching the SQL data processing objects to requirements, find the two wrong statements:

A.	 Tables store instances of entities as rows

B.	 Views create relationships

C.	 Indexes improve the processing speed for data searches

D.	 Keys display data from predefined queries

5.	 You need to create a relation between two different tables that have one related column. Which
statement should you use?

A.	 SELECT AND DROP

B.	 SELECT AND JOIN

C.	 SELECT AND CASE

D.	 CREATE AND RELATION

Answer key

1-A 2-C 3-B, D 4-B 5-B

Part 3:
Non-Relational Data in Azure

This part will provide complete coverage of the knowledge and skills required for the Skills measured
under the Describe how to work with non-relational data on Azure section of the exam syllabus.

You will learn about the fundamentals of NoSQL database concepts in a cloud environment, get basic
skills related to using cloud data services, and build your foundational knowledge of cloud data services
within Microsoft Azure. You will explore non-relational data offerings, provisioning and deploying
non-relational databases, and non-relational data stores with Microsoft Azure.

This part comprises the following chapters:

•	 Chapter 9, Exploring Non-Relational Data Offerings in Azure

•	 Chapter 10, Provisioning and Configuring Non-Relational Data Services in Azure

9
Exploring Non-Relational

Data Offerings in Azure

In the previous chapters, we explored Azure SQL Database, Azure Database for PostgreSQL, Azure
Database for MySQL, and Azure Database for MariaDB. Now, let’s explore scenarios for using these
relational database management systems to store transactional data.

In recent years, NoSQL databases and non-relational repositories have gained great relevance in the
market, specializing in the storage of organizations’ data in an optimized and appropriate way for
each type of data.

In DP-900, we have seen the growth of questions about these non-relational databases so that a
professional is prepared to make the right decisions about their Azure projects.

In this chapter, we will learn about Azure Table storage, Azure Blob storage, Azure Files storage, and
Azure Cosmos DB, and explore scenarios for using each of them. We will also understand different
application programming interfaces (APIs) such as the Azure Cosmos DB API, the Core (SQL)
API, the MongoDB API, the Table API, the Cassandra API, and the Gremlin API.

By the end of this chapter, you will be able to understand the different non-relational data services
offered on Azure. We will cover the following technologies:

•	 Azure Blob storage

•	 Azure Files storage

•	 Azure Table storage

•	 Azure Cosmos DB

So, let’s explore these services.

Exploring Non-Relational Data Offerings in Azure148

Exploring Azure non-relational data stores
In this chapter, we’ll understand the characteristics of Azure non-relational data stores, the differences
between the services that are offered, and the most commonly used scenarios for each.

Exploring Azure Blob storage

Azure Blob storage is a limitlessly scalable storage service that can store structured, semi-structured,
and unstructured data in the form of binary large objects (blobs). This service can be used to store
objects of a variety of types, such as videos, images, JSON files, XLSX files, and CSV files.

Files in Blob storage are stored in a container, in an Azure storage account, and can be accessed
through Azure Storage Explorer, a free Azure tool, or via an API. To better understand this hierarchy,
take a look at Figure 9.1.

The permissions settings of Azure Blob storage are granular; you can create read-only, write-only,
edit-only, or variations of these permissions, within storage as a whole or by a container.

Azure Blob storage can still be organized into folders, such as Windows folders, which makes it easier
to prioritize your objects, as shown in Figure 9.1:

Figure 9.1 – Azure storage account structure

We have three types of blobs in Azure Blob storage:

•	 Block blobs: A block blob is treated as a collection of blocks. Each block can be up to 100 MB
in size. A block blob can contain up to 50,000 blocks, with a total size of more than 4.7 TB. The
smallest amount of data that can be read or written as a single drive is the block. Block blobs
are best for storing large, distinct binary items that don’t change much.

•	 Page blobs: A page blob is a 512-byte-sized page group. It is designed to handle random read
and write operations; if necessary, you can get and save data to a single page. A page blob can
store up to 8 TB of data. Azure deploys virtual disk storage to virtual machines using page blobs.

•	 Append blobs: A block blob optimized to append other blob blocks. Only new blocks can be
added to the end of an append blob; existing blocks cannot be updated or deleted. Each block
can be up to 4 MB in size. An additional blob can be just over 195 GB in size.

Exploring Azure non-relational data stores 149

There are three access levels available in blob storage, which help balance access latency and storage
costs: hot, cool, and archive. The default layer is hot. This layer is for blobs that are accessed frequently.
Blob data is kept on high-capacity media. You can still configure cool and archive storage to minimize
costs for data that is not accessed frequently. Data in the cool layer has only lower performance but
can be used immediately, while the archive layer moves the data to an external store, and to restore
that volume, you must wait for a request made in the Azure portal, which can take hours.

Important note
You can define file life cycle management policies in Azure Blob storage. This means that you
can set a maximum period for a file to remain in storage without being used, and then it can
be moved to another layer, such as cool or archive, or be deleted.

Azure Blob storage is the foundation of storage in Azure, but there is a configuration for it to meet
data analytics projects. Let’s get to know Azure Data Lake Storage Gen2, the Azure Blob storage
configuration for data analytics.

Azure Data Lake Storage Gen2

One of the options you have when using Azure Blob storage is to configure in the data lake storage
format, which uses an organization pattern within the container that can be used by data analytics
tools, such as Azure Synapse Analytics, Azure Databricks, and other vendors.

To configure Azure Blob storage as Azure Data Lake Storage, we need to activate the Hierarchical
Namespace feature on the Azure Blob storage configuration page, and after that, the Azure Blob
storage begins to behave as illustrated in Figure 9.2:

Figure 9.2 – The Azure Data Lake Storage Gen2 structure

Azure Data Lake Storage Gen2 combines Azure Data Lake Storage Gen1 and Azure Blob storage’s
capabilities. For instance, Data Lake Storage Gen2 offers scale, file-level security, and filesystem
semantics. You will also receive low-cost, tiered storage with high-availability/disaster recovery
capabilities because these capabilities are built on Blob storage.

Exploring Non-Relational Data Offerings in Azure150

Cloud stores can have several usage scenarios, but when the migration of a file server is needed, a
common scenario within an organization’s data center, the ideal service to receive these files is Azure
Files storage. Let’s discuss it next.

Exploring Azure Files

It is very common to find a massive volume of files stored on traditional filesystem servers in
organizations, which centralize user and department documents for conditional access by other users
and applications. To be the target of these servers, Azure has the Azure Files service.

Migrating a file server to Azure Files means optimizing and modernizing the traditional hardware-
based format itself and managing the documents that are often critical to organizations.

In Azure Files, the file server can be accessed by the industry-standard Server Message Block (SMB)
and Network File System (NFS) protocols, and the high availability of documents is ensured by the
Azure services’ service-level agreement (SLA).

In the following screenshot, we can see the hierarchy of services between Azure Storage Account,
Azure Files, and the user, who is represented by the computer that is accessing the files.

Figure 9.3 – Azure Files structure

Azure Files is also a configuration format of a storage account, and this format has the capacity to
store up to 100 TB in only one storage account, has a per-file size limit of up to 1 TB, and supports up
to 2,000 simultaneous connections from users and applications accessing the service.

One of the most practical ways to copy files to Azure Files is by using the free Azure tool called AzCopy,
through APIs, or through the Azure portal. You can also use Azure File Sync, an application that
maintains synchronization between a file server and Azure Files.

Another way to work with Azure Files is to map the repository within operating systems, such as on
a traditional file server, which makes it possible for a user to access and save files to Azure Files in a
very practical way.

Exploring Azure non-relational data stores 151

Now that we’ve covered repositories for documents, let’s talk about repositories that are semi-structured
for data, starting with Azure Table storage, which complements the options of non-relational databases
in Azure.

Exploring Azure Table storage

We can describe Azure Table storage as a key-value pair storage system, as explored in Chapter 4,
Working with Non-Relational Data, where each item is represented by a row with columns, containing
data fields that must be stored as shown in Figure 9.4.

Figure 9.4 – Azure Table storage structure

An important thing to remember if you are new to the concepts of NoSQL is not to confuse this type of
table structure with the tables of a SQL relational model. In this case, the tables store semi-structured
data and labels about that data.

All records in this database must have a unique key (composed of a partition key and a row key) and
a Timestamp column, informing the date/time when this record was created. When a record is
edited in the database, another record is created with a new Timestamp, informing the date/time
of the change.

Exploring Non-Relational Data Offerings in Azure152

Important note
Unlike SQL databases, Azure Table storage uses the concept of denormalized tables. These
are large tables with all their fields related to the registry and that have no relationships with
their resources.

Azure Table storage splits a table into partitions to help ensure quick access. Partitioning is a method
of joining related rows based on a shared property or partition key. Rows with the same partition
key will be grouped into a database. Partitioning can help with the organization of data, as well as
scalability and performance, in the following ways:

•	 Partitions are self-contained and can expand or shrink as rows are added or removed from a
partition. A store can have as many partitions as it wants.

•	 You can include the partition key in the search criteria while searching for data. This reduces
the number of input and output (I/O) operations or reads and writes required to identify the
data, which helps reduce the amount of data to be analyzed and increases the speed.

The key in an Azure Table storage table comprises two elements:

•	 Partition key, which identifies the partition that contains the line

•	 Row key, for each row on the same partition

Items in the same partition are stored in line key order. If an application adds a new row to a table, Azure
ensures that the row is placed in the correct position in the table. This scheme allows an application
to quickly run point queries that identify a single row and range queries that fetch a contiguous block
of rows in a partition.

Now that you know about the non-relational data repositories in Azure, we’ll explore the capabilities
of non-relational databases, better known as NoSQL.

Exploring Azure NoSQL databases
In Azure, there are a few options for deploying NoSQL databases, from deploying an open source
database such as MongoDB, Cassandra, or Neo4j running in a virtual machine IaaS, through HBase
databases in the Azure HDInsight service, to Azure Cosmos DB.

Azure Cosmos DB is the main Azure offering to implement a NoSQL database. It’s the NoSQL database
most asked about in the questions of the DP-900 test and is the most used in modern projects, so
let’s explore it next.

Exploring Azure NoSQL databases 153

Exploring Azure Cosmos DB

In this section, we will learn about the concepts of Azure Cosmos DB, and in Chapter 10, Provisioning
and Configuring Non-Relational Data Services in Azure, we will explore it further by performing its
provisioning and configuration.

Azure Cosmos DB is a multimodal, globally distributed NoSQL database system on Azure, which
means that depending on its setting, it may have different operating characteristics and infrastructure
architecture. It is highly scalable and requires no manual maintenance, which greatly facilitates its
use in projects with NoSQL.

The formats that Azure Cosmos DB can configure are as follows:

•	 Documents

•	 Graphs

•	 Key-value tables

•	 Column family stores

This is depicted in the following diagram:

Figure 9.5 – Azure Cosmos DB format types

Azure Cosmos DB APIs

An API is a communication programming interface, used by developers to connect two or more
services, and it can be used for applications to connect in databases.

Distinct database management systems have different APIs, and Azure Cosmos DB has its own and
supports others, such as MongoDB, Gremlin, Table, PostgreSQL, and Cassandra. These multiple APIs
let our apps use Azure Cosmos DB just like any other database.

Exploring Non-Relational Data Offerings in Azure154

Cosmos DB works with enormous volumes of data by using indexes and partitioning to deliver rapid
read and write performance. Multi-region writes can be enabled by adding the Azure regions of your
choice to your Cosmos DB account, allowing global scalability of the applications.

Since APIs are the primary means of interacting with a Cosmos DB database, let’s learn about the
different types of APIs that are supported by the database.

Core (SQL) API

The Core (SQL) API is the native Azure Cosmos DB API, which works by managing JSON files in
document format and using SQL language for all of its operations. Query results in this API generate
new JSON files, as shown in the following example. Here, a SQL query is executed on an Azure Cosmos
DB database with the SQL API:

SELECT *

From customer

Where email="marcelo@outlook.com"

The output of the query will be represented as follows, with the collection of customer:

JSON FILE – Resultset##

{

    "_id": 345,

    "first_name": "Marcelo",

    "email": "marcelo@outlook.com"

}

Now that we know about the Core (SQL) API, let’s learn about the other options available in Azure
Cosmos DB.

MongoDB API

This API aims to maintain Cosmos DB database compatibility with the most widely used NoSQL interface
worldwide, based on the open source MongoDB database. This API has file management very similar
to the Core (SQL) API but based on Binary JSON (BSON). Data manipulations can be done using
MongoDB library features, such as the Mongo Query Language (MQL). In the following example,
we can see the same operation that we analyzed before in SQL, now using the MongoDB interface:

db.customers.find({email: "marcelo@outlook.com"})

Exploring Azure NoSQL databases 155

The output of the query will be similar to the return of the SQL API, querying the customer collection:

JSON FILE – Resultset##

{

    "_id": 345,

    "first_name": "Marcelo",

    "email": "marcelo@outlook.com"

}

You are now familiar with the Core (SQL) API and Mongo DB API, the two options that work well
with document format databases. Next, let’s learn about other Azure Cosmos DB APIs.

Table API

The Table API is used when you need a key-value pair-based database, very similar to Azure Table
storage, covered earlier in this chapter.

Data manipulation in this type of Azure Cosmos DB is based on specific Software Development Kits
(SDKs) that interact with the database endpoint and operate the tables.

Important note
The Cosmos DB Table API is similar conceptually to Azure Table storage, covered earlier in this
chapter, but it has different architecture, limits, and behaviors. To evaluate all the differences,
this URL to the Cosmos DB documentation provides a full comparison: https://docs.
microsoft.com/en-us/azure/cosmos-db/table/table-api-faq.

The following is an example of using the Table API to query customer data, based on record 78 of
the table:

https://endpoint/Customers(PartitionKey='1',RowKey='78')

We still have two more API options in Azure Cosmos DB. Let’s now look at the Cassandra API, one
of the most widely used open source projects in the world.

Cassandra API

Based on the open source Apache Cassandra project, the Azure Cosmos DB Cassandra API creates
an interface for the database and manipulates its data using the SQL language-operated column store
concept. The following is an example of a Cassandra database structure:

https://docs.microsoft.com/en-us/azure/cosmos-db/table/table-api-faq
https://docs.microsoft.com/en-us/azure/cosmos-db/table/table-api-faq

Exploring Non-Relational Data Offerings in Azure156

Figure 9.6 – A sample column store table in a Cassandra database

The query can be performed like this:

Select *

From customers

Where Customer_Name="Ryan"

This query would return the filtered list only by Customer_name="Ryan".

Now, let’s learn about the API that behaves more privately in Azure Cosmos DB because it’s a graph
database, the Gremlin API.

Gremlin API

The Gremlin API is an API that originates from the open source graph computing framework called
TinkerPop, which focuses on mounting databases that represent corrections between data in a
correlational format.

Entities are defined as vertices, which are connected with other vertices to form a graph, as shown
in the following diagram:

Figure 9.7 – An example of a graph database

Summary 157

The example shows Ryan, who reports to Will and works with Database Administration Unit, just like
Will. In this example, we have two vertices, employees, that is, Will and Ryan, and another is the unit.

The Azure Cosmos DB Gremlin API has its own language to create a web of relationships and manipulate
data. The following is an example based on Figure 9.7:

 g.addV('employee').property('id', '3').property('firstName',
Ryan)

g.V('3').addE('reports to').to(g.V('1'))

Now, the following query retrieves all the Employee vertices, ordered by ID:

g.V().hasLabel('employee').order().by('id')

This script is just a simple example of how to manipulate graph databases using the Gremlin pattern. If
you have projects involving this type of database, it is important to know about the data manipulation
language in more detail, but for the DP-900 exam, this is the fundamental knowledge required.

This completes our explanation of all the Azure Cosmos DB APIs and the non-relational data offerings
in Azure.

So, as we’ve finished exploring the main storage services and non-relational databases in Azure, shall
we summarize?

Summary
Non-relational data is indispensably important to organizations, and knowing where to store this
data to meet the needs of a project can contribute greatly to its success. In this chapter, we were able
to go through storage offerings for non-relational data, including the Azure NoSQL database options.

In this chapter, we explored Azure Table storage, Azure Blob storage, Azure Files storage, and Azure
Cosmos DB.

In the next chapter, we will go into more detail about Azure Cosmos DB, provisioning a database in
Cosmos DB and evaluating its settings and characteristics.

Sample questions and answers
Let’s evaluate a few sample questions in preparation for the exam before starting the next chapter:

1.	 What constitutes an Azure Table storage key?

A.	 Partition key and row key

B.	 Table name and column name

C.	 Row number

D.	 Non-structured data

Exploring Non-Relational Data Offerings in Azure158

2.	 What should you do with an existing Azure storage account to enable Azure Synapse Analytics
to use it as a data lake?

A.	 Add an Azure Files share

B.	 Create Azure Storage tables for the data you want to analyze

C.	 Upgrade the account to enable a hierarchical namespace and create a blob container

D.	 Start data ingestion

3.	 Why would you use Azure Files storage?

A.	 To share files that are stored on-premises with users located at other sites

B.	 To enable users at different sites to share files

C.	 To store large binary data files containing images or other unstructured data

D.	 To store video and audio files only

4.	 Which Azure Cosmos DB API should you use to store and query JSON documents?

A.	 Core (SQL) API

B.	 Cassandra API

C.	 Table API

D.	 Gremlin API

5.	 Which Azure Cosmos DB API should you use to interact with data in which entities and their
relationships are represented as vertices and edges in a graph?

A.	 MongoDB API

B.	 Core (SQL) API

C.	 Gremlin API

D.	 Table API

Answer key

1-A 2-C 3-B 4-A 5-C

10
Provisioning and

Configuring Non-Relational
Data Services in Azure

In this chapter, we will learn how to provision and configure Azure Cosmos DB, a non-relational
data service in Azure.

In this chapter, we will look at content that will cover the skills measured in the Describe how to work
with non-relational data on Azure section of the DP-900 certification study guide, available on the
official certification website.

By the end of this chapter, you will be able to understand the following topics:

•	 Provisioning non-relational data services in Azure

•	 How to provision and configure Azure Cosmos DB

•	 Exploring an Azure Cosmos DB database

•	 How to provision an Azure storage account and Azure Data Lake Storage

Technical requirements
This is a chapter that has hands-on exercises. To follow along in this chapter, you will need the following
technical requirements:

•	 A computer with Windows 10 or above with internet access

•	 An active Azure account (http://www.azure.com)

•	 Access to the book’s code repository on GitHub (https://github.com/
PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-
Exam-DP-900-Certification-Guide)

http://www.azure.com
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide

Provisioning and Configuring Non-Relational Data Services in Azure160

Provisioning non-relational data services
In addition to preparing for the DP-900 exam, this book will give you basic knowledge to start your
data projects using Azure. An important part of this training is to carry out the hands-on exercises
proposed in the book, as well as in this section.

In this section, we will provision an Azure Cosmos DB database, a non-relational database. We will
configure the basic settings in this service and explore them, in addition to provisioning an Azure
storage account and Azure Data Lake Storage.

So, let’s go to the Azure portal and walk through the necessary steps.

Provisioning Azure Cosmos DB

The first step is to find the Azure Cosmos DB session in the Azure portal, as shown in the
following screenshot:

Figure 10.1 – The Azure Cosmos DB page

Provisioning non-relational data services 161

Let us now provision Cosmos DB by following these steps:

1.	 First, click the Create button in the main menu or the Create Azure Cosmos DB account
button in the center of the screen.

2.	 Remember the Cosmos DB APIs? This is the time to select which API you want this new
database of yours to use, as shown on the following screen:

Figure 10.2 – Azure Cosmos DB – API selection page

As you can see, the options are Core (SQL) - Recommended, Azure Cosmos DB API for MongoDB,
Cassandra, Azure Table, and Gremlin (Graph). To follow this exercise, we will go to the recommended
option and click on Create below Core (SQL) - Recommended.

Note
The preceding selection involves considerably different options in the Cosmos DB architecture,
so you cannot change an API from an already created database.

Provisioning and Configuring Non-Relational Data Services in Azure162

Basics

In the basic settings, you can adjust the following settings:

•	 Resource group: packt (created previously)

•	 Account Name: mycosmosdba

•	 Location: (US) East US

•	 Capacity mode: Provisioned throughput

•	 Apply Free Tier Discount: Apply

•	 Limit total account throughput: selected

With these settings, your Cosmos DB API Core (SQL) will be implemented in the East US region
using a dedicated capacity for its throughput. This is important because Cosmos DB’s processing
capability is not based on colors and RAM but rather on a unit of measure called a request unit (RU).

An RU is an abstraction of the capacity of CPU, RAM, IOPS, and memory resources required for the
operation of the database in question.

Microsoft also provides an RU calculator that makes it much easier to define the initial scenario. It
can be found at https://cosmos.azure.com/capacitycalculator/.

Important note
There is an article in the official Cosmos DB documentation called Convert the number of vCores
or vCPUs in your nonrelational database to Azure Cosmos DB RU/s, which can be found at
https://docs.microsoft.com/en-us/azure/cosmos-db/convert-vcore-
to-request-unit. It is very useful for anyone who is used to estimating the capacity of
databases using the traditional model with cores and RAM.

We then proceed to the next configuration section called Global Distribution.

Global Distribution

This setting allows you to configure a geographically redundant cluster, with multiple read replicas
and availability zone-based replicas. The distribution options will impact the architecture that the
Cosmos DB deployment will have after provisioning. Configure the following settings:

•	 Geo-Redundance: Disable

•	 Multi-region Writes: Disable

•	 Availability Zones: Disable

https://cosmos.azure.com/capacitycalculator/
https://docs.microsoft.com/en-us/azure/cosmos-db/convert-vcore-to-request-unit
https://docs.microsoft.com/en-us/azure/cosmos-db/convert-vcore-to-request-unit

Provisioning non-relational data services 163

Networking

In this section, you can define which networks can access your Cosmos DB:

Connectivity method: If you want the private use of applications and users within your virtual network
in Azure, you must select Private endpoint; otherwise, you can opt for All networks or Public Endpoint
(selected networks), where you have the option to list the networks that can perform this connection.

Backup Policy

Now, it’s time to ensure a recovery of data from your database. Two alternative backup policies are
offered by Azure Cosmos DB:

•	 Periodic: Scheduled by the administrator with intervals in the backup creation and retention policy

•	 Continuous: Automatic backup that copies all data stored into the Cosmos DB database in a
backup file for restore

Once the account has been created, you won’t be able to change backup policies.

Select the Continuous option and click on the Encryption section.

Encryption

Data encryption is essential, especially for databases with public endpoints. Therefore, Cosmos DB
always applies at-rest encryption when the data is rested in the database, and automatically decrypts
when a query is performed. The encryption key can be configured on this page, and you can use the
key managed by Cosmos DB itself or choose a custom key:

•	 Data Encryption: Service-managed key

Tags

As with all provisioning in Azure, you can define tags that help you in cloud governance.

We will now proceed to the Review + create button. If you’ve configured the aforementioned settings,
your screen should look like the following:

Provisioning and Configuring Non-Relational Data Services in Azure164

Figure 10.3 – Azure Cosmos DB – the Review + create page

Provisioning non-relational data services 165

Click Create, wait for provisioning to finish, and go to the service to review your settings.

Figure 10.4 – Azure Cosmos DB – the settings page

Because this Cosmos DB intent is new, Azure offers a wizard to assist beginners in using Cosmos
DB, asking whether you would like to add a container (a concept similar to SQL database tables; it is
a logical separation of the server in your document store).

Provisioning and Configuring Non-Relational Data Services in Azure166

Anyway, it is not necessary to create containers immediately, so click on Overview on the left-hand side:

Figure 10.5 – Azure Cosmos DB – Overview

This page will introduce you to the key settings and monitors that demonstrate the behavior of your
Cosmos DB database, where you can adjust the settings in Azure Cosmos DB, which we will cover
in the next section.

Provisioning non-relational data services 167

Configuring Azure Cosmos DB

Let’s list the top settings in an Azure Cosmos DB database. These settings are important in environments
that will be used in projects but are also important for answering questions on the DP-900 test.

To know more, follow along the side menu items on the Cosmos DB page as follows:

•	 Access control (IAM): This is where you control the user access to your Cosmos DB. On this
page, you must configure the different access profiles and the action permissions for each
profile, and then add users to those profiles.

•	 Diagnose and solve problems: This is the knowledge base for problems in Cosmos DB. It can
be used by the database administrator to see how to perform a certain configuration and obtain
reliable references for service documentation.

•	 Replicate data globally: This is a very different feature of Cosmos DB, where you can configure
automatic replicas of your database with geographic distribution. This option is interesting for
global projects, where the database being distributed globally can help with the latency and
availability of your solution:

Figure 10.6 – Azure Cosmos DB – Replicate data globally

Provisioning and Configuring Non-Relational Data Services in Azure168

•	 Default consistency: This is the consistency level setting of Cosmo DB. As explained in
Chapter 4, Working with Non-Relational Data, NoSQL databases have the ability to manipulate
the level of data consistency between their databases, which creates flexibility for some types
of eventual consistency applications.

Other important settings in all databases are Backup & Restore, to ensure continuity of your database,
and Networking, to configure access allowed to a database over the network layer – for example,
which IPs can access your database or not.

Now that we know the main configurations of an Azure Cosmos DB database, let’s create a sample
database and explore the NoSQL database a little more.

Creating a sample Azure Cosmos DB database
To create a Cosmos DB sample database, follow the following steps:

1.	 On your Cosmos DB instance settings page, click the Data Explorer link.

2.	 On this page, you have access to tutorials and links to the product documentation, as follows:

Figure 10.7 – Azure Cosmos DB – Data Explorer

Creating a sample Azure Cosmos DB database 169

3.	 Now, let’s click Launch quick start so that Cosmos DB already recommends you some default
settings for a sample database called SampleDB. Click OK to confirm the creation of this container.

4.	 The Cosmos DB wizard itself will guide you to open SampleContainer.

5.	 On the Data Explorer screen, you can explore creating items using the New Item link, and
then update and delete items from this container. These are CRUD operations running directly
on the database.

6.	 The wizard directs you to the Connect screen, which shows all the settings necessary for your
application to connect to the database, as shown in the following screenshot:

Figure 10.8 – Azure Cosmos DB – Data Explorer – Connect

Provisioning and Configuring Non-Relational Data Services in Azure170

7.	 Now, to explore the data by query, hover over the SampleContainer container:

A.	 You’ll see three points; click on them.

B.	 In the list of options, click on New SQL Query.

C.	 Keep the suggested query, SELECT * FROM c, and click the Execute Query button in
the top menu, which returns the following:

Figure 10.9 – Azure Cosmos DB – Data Explorer – query execution

Provisioning an Azure storage account and Data Lake Storage 171

8.	 Now, we can further explore this database using the knowledge we already have about the SQL
language. Try some variations of the SELECT commands, as follows:

SELECT c.id, c.address FROM c WHERE CONTAINS(c.address,
"Any St.")

The knowledge required for DP-900 certification is gained by exploring the Azure data services and
not experience of a full implementation. Based on this, this exploration of the options and process of
creating a Cosmos DB database will help you with any questions related to this content on the test.

Now that we’ve evaluated the Cosmos DB database, let’s evaluate Azure storage accounts and Data
Lake Storage.

Provisioning an Azure storage account and Data Lake
Storage
A lot of unstructured data, such as videos, images, and audio, are better stored in object store repositories
than in database systems because of the database systems’ limitations and the flexibility of object
store repositories.

Therefore, in Azure, we have Azure storage accounts that are secure, flexible, and scalable storage for
these types of unstructured data files.

In the next walk-through, we will explore provisioning an Azure storage account and its configuration
in Azure Data Lake Storage Gen2:

1.	 Go back to the Azure portal home page and search for Storage Accounts.

2.	 Click Create and fill out the form with the following data:

	� Subscription: Select your subscription

	� Resource Group: packt

	� Storage account name: datalakepackt

	� Region: (US) East US

	� Performance: Standard

	� Redundancy: Locally redundant storage (LRS)

Provisioning and Configuring Non-Relational Data Services in Azure172

3.	 Click on Next : Advanced > and configure the following settings:

	� Do not change any configuration of the security section

	� In Data Lake Storage Gen 2, click the Enable hierarchical namespace checkbox:

Figure 10.10 – Azure storage account – Data Lake Storage Gen2 configuration

Important Note
With this configuration active, your storage account begins to behave hierarchically, using
folders, such as Windows folders, but compatible with data analytics tools that usually connect
to Hadoop Distributed File System (HDFS) standards. Azure Data Lake Storage provides
native support for POSIX-compliant access control lists (ACLs)

Summary 173

4.	 Click Review + Create in the top menu and then the blue Create button to provision your
storage account – Data Lake Storage Gen2.

5.	 After provisioning, go to this storage account. In the settings, you can download the Azure
Storage Explorer tool. This tool is important to manipulate the files in your new data lake.

In this section, we explored the main repositories for unstructured data in Azure, which were Azure
Cosmos DB for the database system and an Azure storage account for unstructured data stored in
the object store.

Summary
Non-relational databases are important for the specialization of data storage present in modern
software, and knowing how to use the different Azure offerings is essential for the assembly of a
robust architecture.

In this chapter, we explored provisioning non-relational data services, provisioning and configuring
an Azure Cosmos DB database for the first time, how to explore an Azure Cosmos DB database, and
how to provision an Azure storage account as data lake storage.

In the next chapter, we will enter the fourth part of our book, Analytics Workload on Azure, exploring
the key components of data analytics in Azure. But first, let’s cover a few more questions related to
NoSQL databases that might come up in the DP-900 exam.

Sample questions and answers
Before you move on to the next chapter, try answering the following questions:

1.	 The Azure Cosmos DB ____________ API enables the use of SELECT statements to retrieve
documents from Azure Cosmos DB.

A.	 Core (SQL)

B.	 Gremlin

C.	 MongoDB

D.	 Table

2.	 What is a characteristic of non-relational data?

A.	 Forced schema on data structures

B.	 Flexible storage of ingested data

C.	 Entities may have the same fields

D.	 Each row has the exact same columns

Provisioning and Configuring Non-Relational Data Services in Azure174

3.	 Complete this sentence: _____________ natively support the analysis of relationships
between entities.

A.	 Document databases

B.	 Key-value stores

C.	 Graph databases

D.	 Column family databases

4.	 Which Azure storage solution is compatible with HDFS, Azure Active Directory (Azure AD),
and POSIX-based access control lists (ACLs)

A.	 Azure Table storage

B.	 Azure Data Lake storage

C.	 Azure Queue storage

D.	 Azure Files

5.	 Select the answer that correctly completes the sentence. You have data that consists of video and
audio documents. You need to store the data in an Azure environment that ensures availability
and security. You should use __________ as the data store.

A.	 Azure Cosmos DB

B.	 Azure Table storage

C.	 Azure Blob Storage

D.	 Azure Files storage

Answer key

1-A 2-B 3-C 4-B 5-C

Part 4:
Analytics Workload on Azure

This part will provide complete coverage of the knowledge and skills required for the Skills measured
under the Describe an analytics workload on Azure section of the exam syllabus.

You will learn about the fundamentals of database concepts in a cloud environment, get basic skills in
cloud data services, and build your foundational knowledge of cloud data services within Microsoft
Azure. You will explore the processing options available for building data analytics in Azure. You will
explore Azure Synapse Analytics, Power BI, and other analytics services in Azure.

This part comprises the following chapters:

•	 Chapter 11, Components of a Modern Data Warehouse

•	 Chapter 12, Provisioning and Configuring Large-Scale Data Analytics in Azure

•	 Chapter 13, Working with Power BI

•	 Chapter 14, DP-900 Mock Exam

11
Components of a

Modern Data Warehouse

In this chapter, let’s explore the components of a modern data warehouse on Azure, understanding
the different services such as Azure Databricks, Azure Synapse Analytics, and Azure HDInsight.

This chapter looks at content that will map to the skills measured in Describe common elements of a
modern data warehouse in the DP-900 certification.

This chapter will be important in your data analytics projects in Azure, as we will explore the different
data use cases using Azure tools.

By the end of this chapter, you will be able to understand the following:

•	 Describing modern data warehousing

•	 Azure data services for modern data warehousing

•	 A case study for data analytics on Azure

•	 Databricks, Azure HDInsight, and Azure Data Factory

•	 Real-time data analytics – Azure Stream Analytics, Azure Data Explorer, Spark Streaming,
and Delta Lake

Describing modern data warehousing
Created in the 80s, the data warehouse (DW) concept is “a subject-oriented, integrated, non-volatile,
variable data repository over time to support management decisions” (C. J. Date, Introdução a Sistemas
de Bancos de Dados. eighth edition, Rio de Janeiro Campus, 2004).

In other words, a data warehouse is a database that organizes an organization’s information, leaving
the data more aligned with the nomenclature of company affairs so that it can be consumed by reports
and applications.

Components of a Modern Data Warehouse178

Some important concepts when dealing with a data warehouse are as follows:

•	 Extract, transform, and load (ETL): This is the technique used to extract the information
from the source relational databases, organize this data, and load only the result into the DW.

•	 Data mart: This is a logical subset of the data warehouse, usually divided by department,
subject, or views required by users.

•	 Business intelligence (BI): This is a technology-driven process to analyze data and present
actionable information to help executives, managers, and other enterprise end users make
informed business decisions.

•	 Massively parallel processing (MPP): This is the hardware and software architecture behind
traditional data warehouse tools. There are multiple parallel processing units in the database,
rather than sequential processing as in a relational database.

In Chapter 13, Working with Power BI we will continue learning about data analytics and exploring
Microsoft Power BI, which is important for some questions in the DP-900 certification and a great
tool to create reports and dashboards from a data warehouse.

Looking at the following diagram, we can evaluate the flow of information in a data warehouse:

Figure 11.1 – Data warehouse data flow

The traditional data warehouse found problems with expanding data usage in organizations, so we
will learn about these challenges next.

Challenges of traditional data warehouses

With the exponential growth of data in recent years, traditional DW technologies began to face
scalability and cost-benefit challenges.

As the solutions had not been designed for cloud computing, most of them needed manufacturer-
specific hardware to work in MPP, which created a lock on scalability and impacted the total cost of
ownership (TCO).

At this time, new technologies such as big data began to gain notoriety in the market, especially the
open source Hadoop project.

Describing modern data warehousing 179

The birth of big data

Hadoop is an open source project published by Apache, derived from a paper by Google engineers in
2003 that described how the parallel processing of their search engine indexing was done.

In recent years, the project has evolved a lot and has been adopted by large organizations in parallel
to the large data warehouse projects already existing.

Hadoop solved a great data warehouse challenge, working with unstructured or semi-structured data,
with satisfactory scalability and cost/benefit.

Hadoop’s architecture is based on Hadoop Distributed File System (HDFS) storage, and this hierarchical
repository organized by folders can store any type of data, structured or not.

To store and process the data in HDFS, the data engineer can use MapReduce, Pig, Hive, and Storm,
among other components of the Hadoop project, which can be seen in the following diagram.

Figure 11.2 – Big data Hadoop components

Each component of Hadoop is responsible for data processing, data access control, governance, and
SQL-based data exploration, among others, and each of these components is used by different user
roles in a data organization.

Hadoop has undoubtedly contributed greatly to the evolution of data analytics in organizations, and
Azure has its distribution, Azure HDInsight.

Components of a Modern Data Warehouse180

Azure HDInsight

Azure HDInsight is a Hadoop PaaS service, which contains the most used components in big data
projects using Hadoop such as Spark, LLAP, Kafka, Storm, and HBase.

If you’re planning a project with 100% open source big data standards and want to use components
that can be transported to other cloud providers, HDInsight is an interesting option.

Other benefits of this service are as follows:

•	 Access control: With Azure Active Directory integration and Azure RBAC-based controls, Azure
HDInsight delivers high levels of security and granularity in access control to your environments.

•	 Global scalability: Azure HDInsight is available in multiple Azure regions around the world,
which is a big differentiator compared to other big data solutions.

•	 Extensibility: Azure HDInsight’s open source extension pads make us able to use new big data
projects in our environments, increasing the possibilities.

•	 Cluster types: HDInsight has a cluster specialization, and you can use one or more of these
clusters in your project. The types are as follows:

	� Apache Hadoop: The foundation of Hadoop with HDFS, MapReduce for processing, and
YARN as resource manager

	� Apache Spark: A more advanced open source big data processing project

	� Apache HBase: A NoSQL database that uses the big data architecture to be highly scalable
and performative

	� Apache Storm: A streamed data processor for real-time analytics use cases

	� Apache Interactive Query: An in-memory cache database

	� Apache Kafka: A platform for streaming data ingestion in event format, for real-time
analytics use cases

Azure HDInsight use cases can be migrations from legacy Hadoop distribution environments that
have complex development in their data modeling, or the use of a particular cluster such as Kafka,
widely used in data-streamed projects.

HDInsight is a robust service, but it is big data software. Due to the great simplicity of DWs in modeling
data in formats that business areas prefer and delivering high-performance reports, the concept of a
modern data warehouse emerged, which we will discuss in the following section.

Describing modern data warehousing 181

Modern data warehouse

A modern data warehouse aims to bring the best of big data and data warehouses to a unified, cloud-
based architecture capable of serving all audiences in a data organization with productive tools.

There are a few factors that have led organizations to pursue a new data analytics model, including
the following:

•	 Increased data volumes: The same challenges of DWs were present in big data architectures
when we arrived at the data scalability required by today’s organizations

•	 New types of data: It is common today for non-structured and semi-structured data to be
processed in organizations, but these types of data bring different challenges for governance
and organization

•	 Data velocity: Data analytics cases and use in organizations are increasingly requiring speed
in the ingestion, processing, and delivery of the result data.

Now that we know the challenges that have generated the need for a new architecture, let’s understand
how Azure addresses each of these factors.

Azure for the modern data warehouse

Listing the same factors mentioned in the previous section, we will evaluate the ways in which Azure
can support organizations:

•	 Increased data volumes: Azure’s modern data warehouse architecture is based on and stored
using Azure Data Lake Storage Gen2, with scalability for petabytes of data and support for
unstructured, semi-structured, and structured, organized, and secure data.

•	 New types of data: Azure Cognitive Services can help you to structure non-structured data,
for use cases such as extracting text-ready solutions from images (Computer Vision), extracting
text from audios (speech-to-text) or videos (Video Indexer), and organizing data from a
scanned form (Form Recognizer), among others. These services can be added to the modern
data warehouse architecture in Azure if there is a related need.

•	 Data velocity: Azure relies on hubs such as Event Hubs and IoT Hubs, which are event-shaped
data capture PaaS services for near real-time scenarios. It also supports near real-time processing
in Azure Synapse Analytics, Azure Databricks, and Azure Stream Analytics.

These are just a few examples of services that can be used in your modern data warehouse project. In
the next section, we will detail the most used services in this type of architecture.

Components of a Modern Data Warehouse182

Exploring Azure data services for modern data
warehouses
When we think of modern data warehouse architecture, we think of the process consisting of data
analytics, which can be summarized in the following phases:

1.	 Data ingestion and preparation (ELT)

2.	 Making data ready for consumption (modeling)

3.	 Providing access to this data (reporting or API connections)

In this chapter, we will explore the possibilities of services that Azure offers to implement these phases.
In Chapter 12, Provisioning and Configuring Large-Scale Data Analytics in Azure, there is a hands-on
exercise that will help us understand in practice phases 1 and 2, and then in Chapter 13, Working with
Power BI, we will explore Power BI for reporting.

Let’s start with data ingestion and preparation.

Data ingestion and preparation (ELT/ETL)

ELT stands for extract, load, and transform, and ETL (as mentioned earlier) stands for extract,
transform, and load. These reflect the process of data being extracted from transactional databases
(relational or non-relational, as we saw earlier in this book), loaded into a repository, and transformed
for consumption.

We can see a complete Azure-based modern data warehouse architecture in the following figure:

Figure 11.3 – Modern data warehouse architecture reference

Exploring Azure data services for modern data warehouses 183

Now let’s get into the details of these different solutions.

Data storage – Azure Data Lake Storage Gen2

Azure Data Lake Storage Gen 2 is the best storage option for storing data in a modern data warehouse.
As we saw in Chapter 10, Provisioning and Configuring Non-Relational Data Services in Azure, Azure
Data Lake Storage Gen 2 is a type of storage account that relies on compatibility with big data protocols
and hierarchical document structuring.

A data lake is a collection of data that is kept in its original form, typically as files or blobs, and then
transformed to model consumption needs.

Azure Data Lake Storage is a versatile solution for both staging repositories, which are passages from
unfiltered data sources, and data lake layer storage.

It's common to split the data lake in layers, such as Bronze, Silver, and Gold, or Raw, Curated, and Trusted,
to organize the data flow from the data source, preparing/modeling the data for the data consumption.

Azure data analytics services such as Synapse Analytics, Azure Databricks, and Azure HDInsight use
Azure Data Lake Storage Gen2 as their central data repository.

Now that we know about the default repository for all analytics services in Azure, let’s evaluate the
services that orchestrate the data in the architecture.

Data ingestion – Azure Data Factory and Azure Synapse Analytics

Systems that are used for process automation often play a crucial role in operations and cannot have
interference that compromises their performance and availability. Therefore, a widely used technique
for data analytics is data ingestion, copying a dump from a source base to an analytical repository,
which in the concept of a modern data warehouse is implemented with Azure Data Lake Storage Gen2.

To perform data ingestion, Azure has two tools: Azure Data Factory and Azure Synapse Pipelines.
They are virtually the same, with more than 100 native data connectors that will connect to the most
widely used database formats in an organization.

Azure Data Factory has a differential for organizations that use SQL Server Integration Services
(SSIS) and are migrating to Azure because it can run an SSIS integration runtime, which processes
SSIS packages in Azure Data Factory without any change.

Both Data Factory and Azure Synapse Pipelines rely on the mapping dataflows feature, which is a
visual-interfaced data preparation module, making data engineering work much easier.

The two tools also work with linked services to connect the source databases and can run pipelines
or simple copies of data using the Copy data activity feature.

Components of a Modern Data Warehouse184

Another option, for those who want to develop a data preparation routine by programming on
notebooks, is to perform the processing of Spark notebooks in Azure Databricks or the processors of
Azure Synapse Analytics (Spark, SQL, and Pipelines); we will explore them now.

Data preparation – Azure Databricks

Azure Databricks is a PaaS service on Azure developed by Microsoft in partnership with Databricks, a
company founded by the creators of the open source projects Apache Spark, Delta Lake, and MLflow.

Databricks is now a reference in big data solutions with high-speed, notebook-based, and easy cluster
administration Spark processing. This causes it to be used in some data preparation scenarios, replacing
Data Factory and Synapse Pipelines.

Azure Databricks can be used in data preparation project scenarios, machine learning development,
and data exploration and modeling with the data lakehouse concept, which simulates the functions
of a DW directly in Azure Data Lake.

In the following diagram, we can learn a little more about Databricks integrations, as well as their features:

Figure 11.4 – Azure Databricks architecture

Exploring Azure data services for modern data warehouses 185

Supporting Scala, Python, Java, R, and SQL languages, Databricks notebooks are flexible and quick to
operate and support other open source data projects that can further extend Azure Databricks capabilities.

Some important features of Azure Databricks are as follows:

•	 High-speed connections to Azure storage solutions, such as Azure Blob Storage and Azure Data
Lake, as well as Spark clusters that automatically scale and terminate to reduce costs

•	 The MLflow project to develop machine learning models is one of the most used open
source projects

•	 Indexing, caching, advanced query optimization, and Databricks Enterprise Security (DBES)
support administration, optimization, governance, and environmental security

Now that we’ve learned about Azure Databricks, let’s evaluate the other code-based data preparation
option, which is also the primary Azure solution for data warehouses: Azure Synapse Analytics.

Modern data warehouse – Azure Synapse Analytics

Azure Synapse Analytics is a suite that supports services that support the entire data analytics flow,
from data ingestion, preparation, modeling, and delivery.

Important note
For DP-900 certification, it is not necessary to implement a modern data warehouse architecture
because, in the test, only concepts are required. But to complement the learning, in the next
chapter, we will explore Azure Synapse Analytics with a hands-on exercise to provide the
foundations for your data analytics projects, and you can explore the Synapse configurations
that can be asked about in DP-900.

Components of a Modern Data Warehouse186

In the following screenshot, we can look at the Azure Synapse Analytics components available in the
side menu:

Figure 11.5 – Azure Synapse Analytics workspace

The first item, Home, directs you to the Home workspace, where you can access tutorials, a knowledge
base library, and analyze implementation partners and objects you’ve recently accessed.

The second item, Data, is where you can configure your data repositories, which are Azure Data Lake
Storage Gen2, an Azure SQL database, or Azure Cosmos DB, among other options.

Exploring Azure data services for modern data warehouses 187

Figure 11.6 – Azure Synapse Analytics – Data

The Develop option brings you to an interface for data exploration with the possibility of creating
notebooks and SQL scripts to run in Synapse Analytics clusters for data exploration and transformation.
The different types of processing that Azure Synapse Analytics has are as follows:

•	 Serverless SQL pool: A pool to run SQL-based scripts using a shared capacity in Azure. A very
cost-effective service for some use case implementations. It is built in and always available on
Synapse, which means you don’t need to provision the cluster, as it’s already there waiting to
be triggered by a SQL script.

•	 Dedicated SQL pool: This is the evolution of the Azure SQL DW service, another pool to run
SQL-based scripts, but in this case, dedicated to your infrastructure. In addition to stable and
guaranteed performance, this allows you to materialize your DW database in this pool, which
is different from serverless where you can run the scripts but not keep tables and models saved
permanently; in the Dedicated SQL pool, this is allowed. The interesting thing is that this
database is MPP, a SQL DW inheritance, and that it greatly optimizes queries in large databases.

Components of a Modern Data Warehouse188

•	 Apache Spark pool: This is a Spark processing cluster, like Azure Databricks or an Azure
HDInsight Spark cluster, but more integrated with other Azure services and with some
improvements on the Spark processing created by the Microsoft product team. You can read
about these in detail and understand these improvements in the official documentation of
Azure Synapse Spark pool here:

https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/
apache-spark-overview

Azure Synapse Analytics is a great tool for designing and developing machine learning models
using the Azure ML library created by Microsoft.

•	 Data Explorer pool: This is a new processing format, derived from the Azure Data Explorer
service. As it is not yet required for the DP-900, we will not delve into it, but it is a specialized
pool for processing high volumes of logs, with a highly scalable and cost-effective platform.

In the following figure, we can see this section in Azure Synapse Analytics:

Figure 11.7 – Azure Synapse Analytics – Develop

https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview

https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview

Exploring Azure data services for modern data warehouses 189

In this same Develop section, as seen in Figure 11.7, you can create your mapping data flow for
data preparation.

The Integrate item brings Azure Data Factory functionality into Azure Synapse Analytics, and this
module is called Azure Synapse Pipelines. In the following figure, we can observe that we can assemble
a data pipeline, a link connection, a simple copy of data between two structures, access a gallery of
examples, and even import from pipeline templates:

Figure 11.8 – Azure Synapse Analytics – Integrate

The next item is environment management, with Monitor being the place to track pipeline executions,
connection status, and cluster pools, among other important environment statistics to keep the
environment running:

Components of a Modern Data Warehouse190

Figure 11.9 – Azure Synapse Analytics – Monitor

The general administration of the tool takes place on the Manage page. In this section, we can configure
security and access profiles for Azure Synapse objects; the provisioning and sizing of processing pools,
our connections, and integrations; GIT versioning control; and our templates in the gallery:

Exploring Azure data services for modern data warehouses 191

Figure 11.10 – Azure Synapse Analytics – Manage

With this section, we close the overall exploration of the modern data warehouse service Azure Synapse
Analytics, but so far, we have talked about data that is loaded into Data Lake through batch loads.
Sometimes though, we need to capture the data in streaming, for near real-time solutions. That’s what
we’re going to explore in the next section.

Components of a Modern Data Warehouse192

Real-time data analytics – Azure Stream Analytics, Azure
Synapse Data Explorer, and Spark streaming
Some analytical use cases aim to monitor near real-time processes to assist in decision-making. For
these cases, waiting for a dump from the source database to the target database is not effective; for
this reason the concept of a data stream emerged.

In Azure, there are some service options for working data streams; let’s explore each of them.

Azure Stream Analytics

This is an Azure PaaS service and is very simple and efficient. Usually accompanied by the Azure event
queue service, called Azure Event Hubs, Azure Stream Analytics consists of running SQL scripts on
each of the events that arrive to be processed; that is, it is a data passing service, with some filtering,
groupings, transformations, and so on.

The following figure reflects the data flow performed by Azure Stream Analytics:

Figure 11.11 – Azure Stream Analytics concept

Real-time data analytics – Azure Stream Analytics, Azure Synapse Data Explorer, and Spark streaming 193

We have the option to use a Stream Analytics job, which uses shared processing power (serverless),
or provision a dedicated cluster.

Another interesting option is the integration of Azure Data Explorer within Azure Synapse, so let’s
get to know it now.

Azure Data Explorer and Azure Synapse Data Explorer pools

Azure Data Explorer is a standalone analytics service on Azure, developed to process large volumes
of data, especially logs, IoT device sensor data, website navigation telemetry, and others, and is very
fast and cost-effective.

Azure Data Explorer has its own data exploration language called Kusto Query Language (KQL) and
is optimized for log and time data analysis.

With support for ingesting and outputting results in the event format, Azure Data Explorer can be
used as a near real-time processing solution in a data stream or to process large volume of data to
store the results in an Azure Data Lake.

KQL queries can be created in the Develop section of the Azure Synapse Analytics workspace, and
Data Explorer pools can be configured in the Manage section.

Azure Synapse Data Explorer pools are derived from Azure Data Explorer, but with all native
integration with the Azure Synapse Analytics workspace.

There is also a standard open source option, which is based on the Apache Spark Streaming project.
Let’s discuss that next.

Apache Spark Streaming

Apache Spark can be provisioned on Azure in three different PaaS services: Azure HDInsight, Azure
Databricks, and Azure Synapse Analytics Spark pools.

Spark supports running code developed in notebooks based on different languages (Python, Scala,
and Java, for example), using parallel processing in multiple clusters to improve performance.

All these options rely on the Spark Structured Streaming library, which aims to process data in event
format, based on an application programming interface (API) for data input and output.

When you need to include streaming data in a data lake or Apache Spark-based analytical data store,
Spark Structured Streaming is a very interesting option, and I encourage you to go further in your study
in the documentation (https://learn.microsoft.com/en-us/azure/architecture/
example-scenario/data/stream-ingestion-synapse) before implementing this kind
of use case, but for the DP-900 certification, this overview will help you to answer the questions.

https://learn.microsoft.com/en-us/azure/architecture/example-scenario/data/stream-ingestion-synapse
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/data/stream-ingestion-synapse

Components of a Modern Data Warehouse194

Delta Lake

Delta Lake is a modern architecture pattern for data lakes, based on delta tables that store metadata
from the data stored in a data lake. In other words, Delta Lake records all transactions in a data lake,
creating data lineage (that represents rastreability from the data generation to the data consumption,
recording all transformations during the process).

This technology supports schema enforcement, transactional consistency, and other data warehouse
features, but directly into the data lake, based on Spark routines.

Delta Lake can organize real-time data streams, with batch-loaded data, into containers for data
exploration based on SQL queries.

We can work with Delta Lake on Azure Synapse Analytics and Azure Databricks.

With these data stream options, we’ve finished the concepts and tools for deploying a modern data
warehouse to Azure.

Summary
It is common in the modern data warehouse that the largest value of all company data is generated,
where reports become insights capable of changing processes and supporting critical decision-making,
among other things.

Azure has fantastic services for implementing a modern data warehouse, and its primary service
is Azure Synapse Analytics, which seeks to simplify all analytical processes in the same Workspace
interface; we will explore this in more detail in the next chapter.

In this chapter, we explored the concepts of a modern data warehouse and Azure data services to
implement a modern data warehouse such as Azure Synapse Analytics, Azure Databricks, Azure
HDInsight, Azure Data Factory, and Azure Data Lake.

We’ll resume our hands-on exploration in the next chapter.

Sample questions and answers
Try to answer the following questions to test your knowledge:

1.	 Which two Azure data services enable clusters of Apache Spark?

A.	 Azure Synapse Analytics

B.	 Azure Data Factory

C.	 Azure Databricks

D.	 Azure Cosmos DB

Sample questions and answers 195

2.	 You use the Azure Data Factory service to create a data ingestion and transformation solution.
Data from an Azure SQL database is required. Which two sources should you employ?

A.	 Linked service

B.	 Copy data activity

C.	 Azure Databricks notebook

D.	 Dataset

3.	 How should you name the data that you want to consume for processing using an Azure Data
Factory component?

A.	 Pipelines

B.	 Datasets

C.	 Linked services

D.	 Notebooks

4.	 For which reason should you use a modern data warehouse?

A.	 Perform sales forecast analyses

B.	 Explore daily sales transactions

C.	 Monitor sales performance KPIs

D.	 All of the above

5.	 Which of the components of Azure Synapse Analytics allows you to train AI models using
Azure ML?

A.	 Synapse Pipelines

B.	 Synapse Spark

C.	 Synapse Studio

D.	 Synapse SQL Pool

Answer key

1-A C 2-A, B 3-B 4-D 5-B

12
Provisioning and

Configuring Large-Scale
Data Analytics in Azure

In the previous chapter, we explored the components of a modern data warehouse in Azure. Now, let’s
see how to use the Azure Synapse Analytics toolset to implement our data analytics projects on Azure.

This chapter will look at content that will map to the Describe an analytics workload on Azure section
of Skills measured in the DP-900 certification. You can take a look at the detailed requirements of
DP-900 on the official website: https://docs.microsoft.com/en-us/certifications/
exams/dp-900.

This hands-on chapter is a complement to our previous chapter to dive deeper into the Azure Data
Analytics tools.

By the end of this chapter, we will have covered the following topics:

•	 Common practices for data loading

•	 Data storage and processing

•	 Azure Synapse Analytics:

	� Synapse Studio

	� Synapse Pipelines

	� Synapse SQL pools – serverless and dedicated

	� Synapse Spark pools

	� Synapse Link

	� Synapse Data Explorer

	� Synapse and Azure Machine Learning

https://docs.microsoft.com/en-us/certifications/exams/dp-900
https://docs.microsoft.com/en-us/certifications/exams/dp-900

Provisioning and Configuring Large-Scale Data Analytics in Azure 198

Technical requirements
This is a chapter that contains hands-on exercises – to practice together with me, please pay attention
to the following technical requirements:

•	 A computer with Windows 10 or a newer OS and internet access

•	 An active Azure account (http://www.azure.com)

•	 Access the book code repository on GitHub (https://github.com/PacktPublishing/
Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-
Certification-Guide)

Understanding common practices for data loading
To start an analytics database, we need to load data from transactional databases, where the data that
is generated by enterprise systems is stored.

In Azure, we have some options for performing data ingestion as we covered in Chapter 11, Components
of a Modern Data Warehouse, using batch loads and data streaming, concepts we also learned about
in Chapter 5, Exploring Data Analytics Concepts.

In this chapter, we’ll explore Azure Synapse Analytics so that you can materialize that knowledge to
help you answer DP-900 questions and have a foundation for your Data Analytics projects in Azure.

So, let’s start step by step.

Provisioning an Azure Synapse workspace

To get started, let’s navigate the Azure portal (http://portal.azure.com) and search for the
Azure Synapse Analytics session. When you’re in the Azure Synapse Analytics session, click the +
Create button to provision a new workspace and fill out the form with the following settings:

	� Subscription: coredba

	� Resource group: (US) East US

	� Managed resource group: packetmanaged

	� Workspace name: packt

	� Use Spark on Cosmos: Not selected

	� Region: East US 2

	� Select Data Lake Storage Gen2: From subscription

	� Account name: Click New and fill the name in as packtdatalake as depicted in the
following screenshot:

http://www.azure.com
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide
http://portal.azure.com

Understanding common practices for data loading 199

Figure 12.1 – Provisioning a Synapse workspace page

	� File system name: Following the same process, click New and fill the name in
as packtfilesystem

	� Assign myself the Storage Blob Data Contributor role on the Data Lake Storage Gen2
account to interactively query it in the workspace.: Yes, check the checkbox to create the
proper permission for your user for this storage

Provisioning and Configuring Large-Scale Data Analytics in Azure 200

Now, click Next: Security > to move forward with this Azure Synapse workspace configuration.

Now, we can fill in the admin username and password for the SQL database pool of Synapse Analytics.
Fill this form with the following settings:

	� Use both local and Azure Active Directory (Azure AD) authentication: Yes, check
the checkbox

	� SQL Server admin login: packtadmin

	� SQL password: Pass@word#123

	� Confirm password: Pass@word#123

	� Double encryption using a customer-managed key: Disable

With the basic security settings configured, click Next: Networking > to configure the network
settings, and fill them in as follows:

	� Managed virtual network: Disable (this configuration is important for productive projects,
to add your Synapse Workspace to an Azure vNet, but for the moment, we don’t need
this configuration)

	� Allow connections from all IP addresses: Yes, check the checkbox

Important note
The Allow connections from all IP addresses setting will configure the Azure Synapse workspace
firewall to accept access requests from any computer but considering the user authentication
as the access control layer. If you want to increase protection by manually setting the IP of the
computers that will access the database, you must remove this option and add the IPs.

Go to Next: >, then click on the Review + create > button, and then click on the blue Create button
to provision the Azure Synapse workspace.

Wait for it to provision and after the process is complete, click the blue Go to resource group button.
Then, you can access the packt resource group and administer all services provisioned so far in this
resource group.

Click on the packt Synapse workspace and as soon as you open the Synapse workspace settings page,
click Open to open Synapse Studio, as shown in the following screenshot:

Understanding common practices for data loading 201

Figure 12.2 – Opening Synapse Studio

You will notice that another window will open in your browser when accessing azuresynapse.
net. This is the central portal of your Synapse Analytics, Azure Synapse Studio, where you can connect
to your data sources, perform complex data preparations, model your data, and even create reports
in an integrated Power BI instance.

Now that the environment is set up, let’s dive into data ingestion.

Provisioning and Configuring Large-Scale Data Analytics in Azure 202

Practicing data load

In this exercise, we will explore Azure Synapse Pipelines, which is the module dedicated to performing
data ingestion processes, with Extract, Transform, and Load (ETL) and Extract, Load, and Transform
(ELT) as we know from Chapter 5, Exploring Data Analytics Concepts. To access it, click on the
Integrate item in the panel of icons on the left-hand side of the page, opening the page as follows:

Figure 12.3 – Copy Data tool in Azure Synapse Pipelines

Then, click on the + icon and then Copy Data tool.

In Azure Synapse Pipelines, you can create more complex data pipelines in addition to the data copy,
so there is also a Pipeline section, but for this simple exercise, we will use the Copy Data tool feature.

When accessing the Copy Data tool feature, a wizard (or set of forms) will appear and the first question
is whether we want a Built-in copy task or a Metadata-driven copy task functionality. Built-in copy
task is simpler, but sometimes we need to analyze the metadata before making our copies and that’s
where Metadata-driven copy task is used.

Let’s select Built-in copy task.

Understanding common practices for data loading 203

Next, you will be asked about the running recurrency of this copy. In a real project, it is very important
to evaluate the update window of your data from the data source databases and the availability of this
data in the analytical database in Azure Synapse Analytics.

For this exercise, we will select Run once now and then click the blue Next > button.

In the Source data store section, you have more than 90 connectors for the most diverse types of data
sources used on the market, including relational databases, SQL, NoSQL, Azure document stores,
and other cloud storages, files, and APIs.

Click + New connection to set up a new connection.

Search for Azure SQL Database in the list and click on it.

Let’s use Azure Synapse Analytics by connecting to the Azure SQL database that we provisioned in
Chapter 7, Provisioning and Configuring Relational Database Services in Azure, and then filling out
the form with the following access information:

	� Name: SQLDatabasePackt

	� Description: Our Study SQL Database

	� Connect via integration runtime: AutoResolveIntegrationRuntime

Important note
Azure Synapse Pipelines and Azure Data Factory use an agent called the integration runtime as
a bridge between the data source and the service in Azure. There are three types of integration
runtime available:

Azure Integration Runtime (Auto-resolve) – Used to make connections to data sources
in Azure. This runtime is native to Azure Synapse Pipelines and Azure Data Factory and is
therefore managed by Azure.

Self-hosted Integration Runtime – Used to connect to data sources outside of Azure. This
integration runtime needs to be installed on a server that will bridge this role between connections,
minimizing security risks and network latency on your connections.

Azure-SSIS Integration Runtime – Used to run SQL Server Integration Services (SSIS) packages
on Azure Data Factory or Azure Synapse Pipelines. This integration runtime deploys an SSIS
server on Azure and it’s frequently used for SSIS solutions for migrating from legacy systems.

Provisioning and Configuring Large-Scale Data Analytics in Azure 204

Select the Connection string option and then fill out the following settings:

	� From Azure subscription: Yes, check the checkbox

	� Azure subscription: Your Azure subscription used in your exercises

	� Server name: coredba

	� Database name: coredb

	� Authentication type: SQL authentication

	� User name: administrador

	� Password: Pass@word#123

	� Always encrypted: No

Important note
Azure reserves some words such as administrator, admin, and others, to avoid security issues.
That’s why I have used administrador (which means administrator in Portuguese). In your
projects, you can use something such as admin2022 and variations of this kind for creating
this admin login, but to make sure you can follow all the exercise steps mentioned in this book,
use administrador.

After these settings, click Test connection in the lower-right corner of the page.

If an error occurs, you may have to add a white-listing rule on the Azure SQL firewall of your coredba
SQL server.

To do this, open another tab in your browser (so that you don’t lose the configuration you were doing
with Azure Synapse Pipelines), go to the Azure portal (http://portal.azure.com), and look
for the SQL server session.

Select coredba and then the Networking option. You will see an Allow Azure services and resources
to access this server option. Click on this option and save the changes depicted as follows:

http://portal.azure.com

Understanding common practices for data loading 205

Figure 12.4 – SQL server firewall configuration for connection to Azure services

With these settings configured, return to the tab of your browser that is open on the Azure Synapse
Pipelines connection page and click on the Test connection button in the lower-right corner of the page.

You should now receive a message saying Connection successful as follows and you can click the
blue Create button:

Provisioning and Configuring Large-Scale Data Analytics in Azure 206

Figure 12.5 – Azure Synapse Pipelines testing the connection

Understanding common practices for data loading 207

In the next wizard step of Azure Synapse Pipelines, you can select the entities of the connection that
you want to copy. Select the dbo.student_data table and click the blue Next > button.

In the next step, you can add filters to this copy. We will not use these filters in this exercise, so you
can click the blue Next > button.

Now, it’s time to select the destination of this data copy. To do this, we can select Azure Data Lake
Storage Gen2 provisioned when the Azure Synapse workspace was created. Please fill out the
form with the following values:

	� Target type: Azure Data Lake Storage Gen2

	� Connection: packt-WorkspaceDefaultStorage

	� Integration runtime: AutoResolveIntegrationRuntime

	� Folder path: packtfilesystem

	� File name: studentdata.parquet

The other fields can remain blank and you can click on the blue Next > button.

On the File format settings page, we will configure the format of the file that will be created in this
data lake, containing the student data we are copying from the Azure SQL database. Select Parquet,
leave the rest of the settings as their defaults, and click on the blue Next > button.

Parquet is a very popular data compression format in data lakes and is interpretable by several different
big data and data analytics tools.

In the Settings section, we will configure the task for this data copy pipeline so that we can put a name
to the task and define whether it will have a data consistency check or not, in addition to other settings.

For this exercise, name the task CopyPipeline_packt and then click the blue Next > button.

Review your settings and then click the blue Next > button again.

Azure Synapse Pipelines will run your data copy pipeline, bringing the contents of the coredba
database tables into your Azure Data Lake instance.

Ideally, all four processes succeed, as shown in the following screenshot, and then you can click the
blue Finish button:

Provisioning and Configuring Large-Scale Data Analytics in Azure 208

Figure 12.6 – Azure Synapse Pipelines deployment page

In this way, you complete the process of data loading. Now, with the data stored in Azure Data Lake
connected to Azure Synapse Analytics, we are going to explore where this data was stored.

Data storage and processing

In the left-hand menu in Azure Synapse Studio, click on the Data icon. In this section, you will be able
to see all the connections made by your Azure Synapse Analytics environment.

Navigate to Azure Data Lake Storage Gen2 | packt | packfilesystem to view the studentdata.
parquet file created by your data-loading pipeline as follows:

Understanding common practices for data loading 209

Figure 12.7 – Azure Data Lake exploration on Azure Synapse Studio

Let’s query this data. For this, right-click on the filename and the New SQL script option > Select
TOP 1000 rows. This consultation will be carried out by Azure Synapse serverless SQL pool, which
is the default option for queries in Azure Synapse.

Azure serverless SQL pool

In this way, the SQL script to query the first 1,000 records of this file will already be created by Azure
Synapse Analytics, as will a window to run this script. In this window, you can see Connect to: Built-in,
the serverless SQL pool endpoint, and then you can click the Run button to run the query as follows:

Provisioning and Configuring Large-Scale Data Analytics in Azure 210

Figure 12.8 – SQL query execution using Azure Synapse serverless SQL

pool consulting Azure Data Lake Storage Gen2 data

This query can be found in the GitHub repository of this book by opening the Chapter12 folder
in GitHub and seeing the //Step 1 query in the Chapter12.sql file.

Understanding common practices for data loading 211

As we can see, from a simple note, we run a query on the data that is stored in the semi-structured
studentdata.parquet document using SQL. Serverless SQL pool is a very interesting processor
for performing this type of exploration directly in Azure Data Lake, using the processing power shared
with other Azure users, for a very efficient query performance.

However, sometimes, we need to create a (SQL-standard) relational database dedicated to our project
so that it is used as a data warehouse, so that’s when we use Azure Synapse dedicated SQL pool.

Azure dedicated SQL pool

To explore Azure dedicated SQL pool, first, we need to create this dedicated pool. Access the Manage
item from the left-hand menu in Azure Synapse Studio.

On this page, you can administer not only the dedicated pool but also other processors such as a
serverless SQL pool or a Spark pool.

In the SQL pools section, click New and fill in the following settings:

	� Dedicated SQL pool name: packtdedicatedsqlpool

	� Performance level: DW100c

Click on the blue Review + create button and then on the blue Create button.

Provisioning should take a few minutes, as it is a slightly more complex operation for Azure, but as
soon as you finish, you should notice that it will be flagged as Online in your list of SQL pools.

Let’s explore this dedicated SQL pool. For this, let’s copy a data table from the SQL database to the
dedicated SQL pool database.

Return to the Integrate item in the left-hand menu of Azure Synapse Studio. Then, click on the +
button and the Copy Data tool option.

Leave the Properties section settings as their defaults and click on the blue Next > button.

Under Source, select Azure SQL Database and the AzureSqlDatabase1 connection, which is the
connection we created in the previous section of this chapter. In this way, you should be able to explore
the tables present in this database, select the dbo.student_data table for our exercise as follows,
and click on the blue Next > button:

Provisioning and Configuring Large-Scale Data Analytics in Azure 212

Figure 12.9 – Azure Synapse Pipelines configuration for the data copy

Under Source | Configuration, keep the settings as their defaults and click the blue Next > button again.

In the next section, we will configure the destination – fill in the following settings according to the
following figure:

	� Target type: Azure Synapse dedicated SQL pool

	� Connection: packtdedicatedsqlpool

	� Auto-create a destination table with the source schema: Click on this item as shown in
the following screenshot:

Understanding common practices for data loading 213

Figure 12.10 – Azure Synapse Pipelines destination data store configuration

Keep the name of the table to be generated as dbo.student_data and click on the blue
Next > button.

In the following section, Column mapping, Azure Synapse will help you define the columns that will
be created in your dedicated SQL pool if you need to change a data type or the name of a column.

Important note
There are different data types between the SQL Server standard (used by Azure SQL Database)
and the Azure Synapse SQL dedicated pool pattern, due to the architectural differences between
the two software. Data types supported by Azure Synapse dedicated SQL pool can be found
in the official Azure documentation here: https://docs.microsoft.com/en-us/
azure/synapse-analytics/sql/develop-tables-data-types.

Go to the Next > button and fill out the form with the following settings:

	� Task name: CopyPipeline_packt2

	� Copy method: Bulk insert

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-data-types
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-data-types

Provisioning and Configuring Large-Scale Data Analytics in Azure 214

Keep the other settings as recommended and then click on the Next > button again twice to start
running your Azure Synapse Pipelines package. Your result after execution should be like the following
print, validating the execution of the data copy:

Figure 12.11 – Azure Synapse Pipelines deployment complete

Click on the blue Finish button and return to the Data item in the left-hand menu of Azure Synapse
Studio. Browse the items: Workspace, SQL database, packtdedicatedsqlpool (SQL), and then Tables.

Under Tables, you will find the dbo.student_data item. Right-click on this table, click on New
SQL script, and then click on the Select TOP 1000 rows option to get the result as follows:

Understanding common practices for data loading 215

Figure 12.12 – Azure Synapse dedicated SQL pool query exploration

You have this query available in the GitHub repository of this book in the Chapter12 folder as //
Step 2 in the Chapter12.sql file.

Using this logic, you can move semi-structured and structured data to new or existing tables from
the dedicated SQL pool to generate your data model.

You can also use standard SQL Server tools to connect to and administer the dedicated SQL pool,
such as SQL Server Management Studio, Visual Studio Data Tools, and Azure Data Studio.

Now, let’s prepare the Synapse dedicated SQL pool, our data warehouse, for the next chapter of this
book, where we will explore a model of facts and dimensions using Power BI. To do this, return to the
GitHub repository, the Chapter12 folder, and copy the //Step 3 query in the chapter12.
sql file.

Paste this query into the dedicated SQL pool query executions window and click the Run button. The
script will create the tables and add records to the proposed data model.

Now that we know the data processing options using SQL pools and we explored these possibilities,
let’s learn about Azure Synapse’s third data processing option, Spark pools.

Provisioning and Configuring Large-Scale Data Analytics in Azure 216

Azure Spark pools

A major breakthrough with Azure Synapse Analytics is it having a powerful standard open source
parallel processor, Apache Spark, as a data processing option, using big data techniques within Azure
Synapse Studio.

One or more Spark pools can be provisioned in Azure Synapse Studio and each pool is the representation
of a parallelized processing Spark cluster. Here are some important settings for each Spark pool:

•	 Name: The name of your Spark pool.

•	 Capacity: The sizing of the servers and the number of servers that will be part of the cluster.
You can opt for a GPU server within this configuration and still set whether you will have
auto-scaling in this pool or not.

•	 Spark Runtime: This option defines whether your Spark pool will implement some libraries
in your installation, such as Python and Java.

Important note
If you are planning to mount a Spark pool, I recommend this official configuration documentation
for Azure Synapse Spark pools. In it, you will find all the details relevant to their implementation:

https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/
apache-spark-pool-configurations

To provision your Spark pool, access Manage on the left-hand menu of Azure Synapse Studio and
then click on Apache Spark pools.

On this page, you can create your Spark pool by clicking New Apache Spark pool. The following
settings page should open for you to fill in:

https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-pool-configurations
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-pool-configurations

Understanding common practices for data loading 217

Figure 12.13 – Azure Synapse Spark pool provisioning page

Fill the form out with the following information:

	� Apache Spark pool name: packtspark

	� Node size family: Memory Optimized

	� Node size: Small (4 vCores / 32 GB)

	� Autoscale: Enabled

	� Number of nodes: 3

	� Estimated price: 9.36 to 31.20 BRL

	� Dynamically allocate executors: Disabled

Click on the blue Review + create button and then on Create to begin pool provisioning.

Provisioning and Configuring Large-Scale Data Analytics in Azure 218

After confirming that your Spark pool is available for use, Azure Synapse Studio alerts you to navigate
to the Develop item in the left-hand menu.

Click on the + button and then on Notebook, as shown in the following figure:

Figure 12.14 – Azure Synapse Studio | Develop – new notebook page

In your new notebook, set the options at the top as shown in the following screenshot. These settings
indicate which Spark pool your notebook will run in and what notebook interpretation language you
want for processing:

Figure 12.15 – Azure Synapse Studio | Develop – Notebook configurations

To test some Spark processing, you can search for sample notebooks on the internet or use the Solutions
Gallery in Azure Synapse Studio to search for references from Spark notebook implementation use
cases. The gallery can be accessed from the Develop menu by clicking on the + button and then on
Browse gallery:

Understanding common practices for data loading 219

Figure 12.16 – Azure Synapse Studio – gallery

If you want to test notebook execution, I suggest following the tutorial available at this link: https://
docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/
quickstart-gallery-sample-notebook.

For this notebook, we will give a complete example, both of running Apache Spark in Azure Synapse
and building a machine learning model for it.

Case
As our goal in this book is mainly to prepare you for the DP-900 certification, it is not necessary
that you practice writing Spark scripts and executing notebooks, as this is not required
knowledge. However, if you want to explore Spark pools further, I suggest starting with this
Power BI data exploration and report creation tutorial based on Spark processing: https://
docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-
spark-to-power-bi.

https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/quickstart-gallery-sample-notebook
https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/quickstart-gallery-sample-notebook
https://docs.microsoft.com/en-us/azure/synapse-analytics/machine-learning/quickstart-gallery-sample-notebook
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-to-power-bi
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-to-power-bi
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-to-power-bi

Provisioning and Configuring Large-Scale Data Analytics in Azure 220

With this, we have completed our exploration of the main data processors in Azure Synapse Analytics.
In the next section, we will cover an overview of the other relevant components, depending on the
use case.

Azure Synapse Link

One of the most time-consuming activities for a data engineer is the ingestion of data because they
must evaluate whether it is necessary, along with the complexity of streaming data in near real time,
whether batch loads meet, and with what recurrence in the load.

Azure Synapse Link is a recent Azure project for hybrid transactional/analytical processing (HTAP),
which aims to simplify this process of data ingestion.

Link enables Synapse SQL pools to access data from transactional databases (SQL and NoSQL) directly
by synchronizing data for a read replica, which creates a near-real-time interface.

Currently (as of August 2022), the available links are as follows:

•	 SQL Server

•	 Azure SQL Database

•	 Azure Cosmos DB

•	 Dataverse

Each link has a process for implementation. To deploy Azure Synapse Link to SQL Server, for example,
you need to run a series of configurations, which are described at the following link: https://
microsoftlearning.github.io/mslearn-synapse/Instructions/Labs/09-
Synapse-link-sql.html.

Azure Synapse Link, while very important for increasing your productivity when deploying data
projects in Azure, is not necessary for the DP-900 exam. The goal of including these components here
is so that you have a knowledge base and can research the situations you will face in real-life projects.

So, let’s get to know another Azure Synapse Analytics processor, Azure Synapse Data Explorer.

Azure Synapse Data Explorer

This is a version of Azure Data Explorer within Azure Synapse Studio. Data Explorer is a time data
processor, which is very interesting for event log processing use cases.

You can use Azure Synapse Data Explorer in data preparation routines, time series anomaly detection,
and near real-time processing cases, among other things.

https://microsoftlearning.github.io/mslearn-synapse/Instructions/Labs/09-Synapse-link-sql.html
https://microsoftlearning.github.io/mslearn-synapse/Instructions/Labs/09-Synapse-link-sql.html
https://microsoftlearning.github.io/mslearn-synapse/Instructions/Labs/09-Synapse-link-sql.html

Understanding common practices for data loading 221

The difference with this version of Data Explorer is that because you are within Azure Synapse Studio,
you can integrate this log processing into other processes using notebooks or SQL scripts in your
data project.

To create an Azure Synapse Data Explorer pool to evaluate the service, go to the Manage item in the
left-hand menu of Azure Synapse Studio and then click Data Explorer pools (preview):

Figure 12.17 – Azure Synapse Data Explorer pools

In addition to processing data, data organizations extract great results through the use of machine
learning on the part of data scientists. Therefore, your project may often need Azure Machine Learning,
an Azure platform dedicated to working with machine learning models.

Wait, aren’t we talking about Azure Synapse? Let’s now understand the integration that exists between
these two services.

Provisioning and Configuring Large-Scale Data Analytics in Azure 222

Azure Machine Learning

Machine learning is a subset of artificial intelligence, which uses computers to learn based on statistical
algorithms. Machine learning models can be developed based on notebooks in Azure Synapse Spark
pools or in the specialized tool Azure Machine Learning, which is a dedicated platform for developing,
deploying, and managing machine learning models.

This powerful tool can be implemented based on the concepts of machine learning operations
(MLOps) to automate the life cycle of a machine learning model.

Azure Synapse can integrate with Azure Machine Learning so that the two services work together,
providing all the necessary resources for data scientists.

To integrate Azure Machine Learning into Azure Synapse Studio, go to the Manage item in the left-
hand menu, navigate Linked Services | New, and then search for machine learning in the list
of services as follows:

Figure 12.18 – Azure Machine Learning in Azure Synapse linked services

In the form that will open, you will have to provide the configuration parameters for Azure Synapse
to connect to an Azure Machine Learning instance.

Summary 223

After successful integration, you will have one more possibility to call on the machine learning models
developed in Azure Machine Learning directly in Azure Synapse Analytics, as shown in the following
example of running a model on the student_data1 table from our dedicated SQL pool:

Figure 12.19 – Azure Synapse with Azure Machine Learning integration

With that, we’ve covered all the most important Azure components for starting out with large-scale
data analytics.

Summary
To implement a project with large-scale data analytics, Azure offers a variety of solutions, such as
Azure Synapse Analytics, Azure Databricks, Azure HDInsights, Azure Machine Learning, and Azure
Data Explorer, among others.

Provisioning and Configuring Large-Scale Data Analytics in Azure 224

The DP-900 exam requires the knowledge to explore these options, with a greater focus on the
motivations for using each tool, and has some more detailed questions based on Azure Synapse
Analytics, which is the main Azure platform for these projects. The knowledge gained in this chapter
and our exploration of the tool is not only very important for answering these questions but also for
directing your path when it comes to a real-life project.

To sum up what we covered in the chapter, we started by exploring the SQL pools further – serverless
and dedicated – executing SQL scripts to exercise them. Then, we had an overview of the Spark
pools, Data Explorer pools, Azure Synapse Link, and the integration of Azure Synapse with Azure
Machine Learning.

In the next chapter, we will turn this data into rich reports, indicators, and presentations of our results
through the use of Power BI.

Sample questions and answers
Let’s go through a few more possible questions about large-scale data analytics from the DP-900 test:

1.	 Which of the Azure data services enables clusters of Apache Spark and SQL pools?

A.	 Azure Databricks

B.	 Azure SQL Database

C.	 Azure Synapse Analytics

D.	 Azure Spark

2.	 Select the true statement:

A.	 ETL can reduce the transfer of sensitive data to destination systems.

B.	 ELT transforms data by using a computer resource independent of the source system and
destination system.

C.	 ELT can reduce the transfer of sensitive data to destination systems.

D.	 ETL transforms data by using a computer resource independent of the source system and
destination system.

3.	 Complete the sentence: ___________ presents content defined by a query.

A.	 An index

B.	 A view

C.	 A stored procedure

D.	 A notebook

Sample questions and answers 225

4.	 Complete the sentence: If you need to process data that is generated continuously and near
real-time responses are required, you should use _______________.

A.	 Scheduled data processing

B.	 Buffering and processing

C.	 Streaming data processing

D.	 Batch data processing

5.	 Complete the sentence with the best option:

__________________ analytics is a technique that suggests the steps you should take to
accomplish a goal or aim.

A.	 Descriptive

B.	 Prescriptive

C.	 Diagnostic

D.	 Predictive

Answer key

1-A 2-B 3-B 4-C 5-B

13
Working with

Power BI

The previous chapter showed us, through hands-on examples, how to use the most important Azure
Data Analytics services, but how can we present the results after the data analysis? We will cover this
topic in this chapter by exploring Power BI, which is the frontend platform of Microsoft.

This chapter contributes to the Skills Measured part of the Describe an analytics workload on Azure
part of the DP-900 certification since a few questions about Power BI are included in the exam, but we
will explore this a little bit more to give you the foundations to help you get started with your projects.

In this chapter, we’ll discuss the concepts and different components of Power BI and explore the tool
using a hands-on exercise that will connect Power BI with the Azure Synapse Analytics SQL Pool
database we created in Chapter 12, Provisioning and Configuring Large-Scale Data Analytics in Azure.

By the end of this chapter, you have an end-to-end view of a modern data warehouse with a business
intelligence solution that supports your projects in this area that can help you answer possible
DP-900 questions.

In this chapter, we will cover the following topics:

•	 Using Power BI

•	 The building blocks of Power BI

•	 Exploring Power BI Desktop

•	 Exploring Power BI service

•	 Other versions of Power BI – Premium, Embedded, and Report Server

•	 Power BI mobile app

So, let’s start by discussing the concepts surrounding Power BI.

Working with Power BI228

Technical requirements
To be able to follow the hands-on sections of this chapter, you will need a Power BI account. If you
don’t already have one, now is a great time for you to create a free trial account. To register, you can
go to https://go.microsoft.com/fwlink/?LinkId=874445.

You can find this chapter’s example file in this book’s GitHub repository at https://github.
com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-
Exam-DP-900-Certification-Guide/tree/main/Chapter13.

Introducing Power BI
Power BI is a complete business intelligence (BI) tool that’s composed of various apps and services
to meet any needs in terms of data consumption and analysis.

With Power BI, it is possible for a business user, with no technical skills, to create data source connections
between different databases such as SQL Server, Oracle, Excel spreadsheets, and CSV files, among
others, and create self-service analyses.

Power BI’s simplicity and similarity to the other software in the Office 365 suite make it a leader in the
self-service BI market, which is a branch of BI that allows the end user to perform their own analysis
and not just consume pre-built reports.

Power BI can be used to create reports that visualize data stored in databases or to create near-real-
time reports that are used for immediate decision-making. In addition to these capabilities, it also
has tools for applying AI models to the data, assisting in its exploration and complex data modeling.

Now, let’s get to know the components of the Power BI tool.

The building blocks of Power BI
Power BI is a multi-component solution that is used in a sequence of activities, often by different user
profiles, from creating connections and data work to developing a report, and from publishing this
report to consuming the information provided by it.

The following figure represents this Power BI flow, which starts with Power BI Desktop, which involves
developer users, through to Power BI Service, where reports are published, and even Power BI App,
where reports are consumed by business users:

https://go.microsoft.com/fwlink/?LinkId=874445
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter13
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter13
https://github.com/PacktPublishing/Microsoft-Certified-Azure-Data-Fundamentals-Exam-DP-900-Certification-Guide/tree/main/Chapter13

The building blocks of Power BI 229

Figure 13.1 – Power BI’s basic suite of tools and services

Let’s understand each of these components:

•	 Power BI Desktop: This is a Windows desktop tool for report development and data modeling.
It has advanced connection, modeling, and data visualization capabilities.

•	 Power BI Service: This environment is used to share reports and data models so that other
members of your organization can consume them. This service focuses on all administration,
parameterizations, connections, and access controls to reports.

Power BI Service is organized by workspaces, which are containers that are similar to Windows
folders, where each user owns their workspace and can view the other workspaces that have
been shared with it.

•	 Power BI App: This tool provides free apps for Windows, Mac, Android, and iOS for reporting,
exploring, and connecting to Power BI Service.

In addition to these fundamental components, there are additional versions of Power BI that come
in the form of licenses, as follows:

•	 Power BI Pro license: Power BI Pro is a Power BI license that’s needed to access Power BI
Service, as well as to access Workspaces so that you can share reports with other users. It’s
unusual to come across license-related questions in the DP-900 exam, but for completeness,
the Power BI Pro license can be used in two ways:

	� A license is needed for all users that will share reports in one organization, independent of
whether these users will be publishers or viewers on Power BI Service

	� A license is needed just for publisher users, as well as a license for Power BI Premium per
capacity, to enable unlimited users to read the reports

Working with Power BI230

•	 Power BI Premium license: This is a special type of workspace in Power BI Service that increases
the capabilities of the traditional workspace, providing greater service limits and additional
features. Power BI Premium licenses can be activated in two modes:

	� Per Capacity: The workspace will be a dedicated capacity resource for the organization,
with unlimited read-only user access for free. To publish in this environment, you need a
Power BI Pro license. Power BI Premium per capacity license gives the organization rights
to deploy a Power BI report server, which we will cover in the next topic.

	� Per User: The workspace will have the specialized features of the Premium license, but it
will just be enabled for the users that have Power BI Premium per user. All features found
in Power BI Pro can be found in Power BI Premium per user.

Important note
Paginated reports are reports that have been formatted so that they can be printed or distributed.
Typically, they fit on a standard print page, hence the name paginated reports. They are a unique
feature of Power BI Premium workspaces. They are not created in Power BI Desktop; instead,
they are created in a specialized tool called Power BI Report Builder. Go to the following
URL to download Power BI Report Builder: https://www.microsoft.com/en-us/
download/details.aspx?id=58158.

•	 Power BI Report Server: This is a version of Power BI Service that can be deployed manually
in any Windows Server in the cloud, in data centers on-premises, and more. It’s used to host
Power BI reports on-premises or in Azure Virtual Machines. Its features compared to Power
BI Service are limited, because the purpose of Power BI Report Server is to host the reports,
wherever they are. However, it doesn’t have all the Power BI Service features such as management,
collaboration, and artificial intelligence to help with report exploration.

•	 Power BI Embedded: This is a Power BI reports host service that embeds these reports into
development applications. Power BI Embedded can be provisioned in a Power BI Premium per
capacity license, reserving part of your dedicated capacity, or on the Azure portal, provisioning
a Power BI Embedded instance.

Now that we’ve had an overview of the components of Power BI, let’s look at some of them in more detail.

Exploring Power BI Desktop
Power BI Desktop is a complete tool for BI report development. The purpose of this book is not to
cover all the products, but to show you the main features, such as connections, data modeling, and
report creation.

https://www.microsoft.com/en-us/download/details.aspx?id=58158
https://www.microsoft.com/en-us/download/details.aspx?id=58158

Exploring Power BI Desktop 231

To start using Power BI Desktop, you need to download and deploy the application on your system. It
can be found on the Microsoft website at https://www.microsoft.com/en-us/download/
details.aspx?id=58494 or in the Windows Store, the Windows operating system app store.

After installing Power BI Desktop on your computer, open the application so that we can start exploring.
When you open Power BI Desktop, the following window will appear:

Figure 13.2 – Power BI Desktop home window

In this window, we have access to introductory Power BI videos and their resources, as well as blog
access links for updates, discussion forums, tutorials, and samples. This is also where we can start
creating our connections in databases.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494

Working with Power BI232

Creating a Power BI file

Let’s start creating our first Power BI file:

1.	 Click the Get data button in the home window.

2.	 Search for Azure Synapse Analytics SQL in the list of connectors and fill in the
following information:

	� Server: packt.sql.azuresynapse.net.

	� Database: Keep this field empty; we will not select one specific database. Instead, we will
connect to the entire server instance of this Azure Synapse SQL dedicated pool.

	� Data Connectivity mode: Import.

Note
Power BI allows two types of connection – Import, which copies data from the data source for
Power BI to run the scripts locally, or DirectQuery, which sends the query to the data source,
which only returns the result to be displayed in Power BI.

3.	 If Power BI asks you to authenticate, click Database in the left-hand menu and fill in the
following data. Then, click the yellow Connect button:

	� User name: packtadmin

	� Password: Pass@word#123

Important note
If you are unable to establish this connection, return to Azure Synapse Analytics workspaces,
go to Synapse Studio, and click Manage in the left-hand side menu. Here, check whether
packtsqldedicatedpool is turned on or not. If it’s paused, click to turn it on; leave its Status
set to Online.

4.	 You should be directed to a window that shows all databases, tables, and fields per table that are
available in this database. Click to select entities (columns/tables if your data is table-based).
Here, we will select dim_customer, dim_product, and fact_sales. Then, click the
yellow Load button, as shown here:

Exploring Power BI Desktop 233

Figure 13.3 – Power BI Desktop – selecting connection entities

As we can see, in addition to selecting only the entities that we want to import into the Power BI model,
we also have the Transform Data button so that we can prepare the data. Transform Data will open
Power Query, a Power BI module dedicated to data transformations and preparations.

After clicking the Load button, we have to wait a few seconds. Power BI has already understood the
schema of this entity (or the multiple entities if you are connected to multiple at the same time) and
imported the metadata from this data source into your Power BI file. This metadata is used to create
reports, perform data preparations, and more.

Working with Power BI234

Creating a connection

After loading, start exploring the top menu, where you have the option to create a connection, manage
existing connections in the file, or open Power Query to perform data preparation, among others.

The left-hand side menu contains three items – one for reporting development, one shows the tabular
entities of the data model, and one where we can visualize the data model and its relationships:

Figure 13.4 – Power BI Desktop – model section

The right-hand side menu consists of different windows. As shown in Figure 13.4, we can see Properties
and Fields. These windows are dynamic. With each selection that we make in Power BI Desktop, the
settings for the properties of the selected object are changed. The Fields window is important as it
shows that all the fields can be used to assemble your Power BI reports.

Exploring Power BI Desktop 235

As we can see in the bottom-left corner of Power BI Desktop (Figure 13.4), we have the same tab
concept as other Microsoft Office 365 Suite tools, where we can have a set of different reports in this
same file, plus options to zoom in at the bottom right.

In Power BI, we can explore the concepts of data modeling, which we covered in Chapter 5, Exploring
Data Analytics Concepts, because we can create Fact/Dimension tabular models using the Power BI
suite or consume them from a data warehouse, as we are doing in this exercise.

Click the Report button on the left-hand side menu of the screen. This is the workspace for assembling
the reports, So, let’s go to the Fields window on the right-hand side and select the following fields:

•	 Dim_customer: name

•	 Fact_sales: units

Once you select these two fields, Power BI interprets the relationships between the entities and calculates
the number of units that each customer has purchased.

We can explore the chart options to demonstrate these results. For example, you can click on the bars
shown in the following screenshot to check the aggregation of the quantities per customer:

Figure 13.5 – Power BI Desktop – the report section

Working with Power BI236

Let’s try something. With this chart selected, check the price field on the right-hand side. In the
Visualizations tab, click the Table icon to return the chart to tabular format, click the down arrow
next to the price column, and click Sum, as shown in the following screenshot:

Figure 13.6 – Power BI Desktop – making report adjustments

By doing this, you have adjusted your chart to aggregate total sales per customer, demonstrating the
units and total value purchased.

Publishing a report

Following this logic, you can assemble complex reports by using the various graphical and calculation
possibilities of Power BI. You can explore other chart types in the Visualizations tab, such as line
charts, pie charts, and scatter charts.

To facilitate this exploration, we continued to explore Power BI’s capabilities; a complete result file of
this exploration can be found in this book’s GitHub repository. So, go to this book’s GitHub repository,
go to the Chapter13 folder, and download and open the PacktSampleReport.pbix file in
your Power BI desktop application.

Note
If Power BI returns a message stating that you can’t connect to the data source, you must set up
a connection to Azure Synapse Analytics, as we explored in the Creating a connection section
earlier in this chapter, so that you can update the report.

Exploring Power BI Desktop 237

Now, let’s click the Publish button, which can be found by going to the Home tab of Power BI Desktop.
Before publishing, Power BI will prompt you to save this PBIX file (Power BI report file), choose a
location on your computer, and save it.

After saving this file, Power BI will display a Workspace selection window where you can publish your
report to Power BI Service. Select My Workspace and click the yellow Publish button.

Once the report has been published, you will see the following window in Power BI Desktop, where
you have the option to Open PacktSampleReport.pbix in Power BI. Click this option, as shown in
the following screenshot:

Figure 13.7 – Power BI Desktop – making report adjustments

Your browser will open the respective Power BI page. Now, let’s explore Power BI Service.

Working with Power BI238

Exploring Power BI Service
As explained earlier, Power BI Service is where reports are stored and the entire Power BI operation
is administered. You can find Power BI Service at https://app.powerbi.com/.

In the Power BI Service portal, you can share your reports, define conditional viewing rules with
row-level security and column-level security, package your reports into apps, and create interactive
dashboards based on one or more reports, among other things:

Figure 13.8 – The sample report opened in Power BI Service

From the left menu, you can switch to other sections of Power BI Service. The top menu is where
report actions are performed, such as printing, sharing, applying artificial intelligence to the data to
get insights (the Get Insights button), and subscribing to receive notifications about updates regarding
the report data, among others.

Creating a dashboard

To guide this exploration, we will create a dashboard. To do this, look for a pin button on the report
bar chart, as shown in the following screenshot, and click Pin visual:

https://app.powerbi.com/

Exploring Power BI Service 239

Figure 13.9 – The Pin visual button in Power BI Service

Click the New Dashboard option, set Dashboard name to PacktDashboard, and confirm this
by clicking the yellow Pin button:

Figure 13.10 – The Pin to dashboard window in Power BI Service

Working with Power BI240

On the dashboard confirmation window, you can access the visuals, and by repeating this pin operation
on multiple Power BI report objects, you can create very interesting dashboards that organize various
pieces of information.

A Power BI dashboard is a centralized information page that’s widely used as a cockpit to monitor
indicators of different Power BI reports. A well-designed dashboard only presents the highlights of a
story; you can dig into the details in the reports.

Now that we’ve explored reports and dashboards in Power BI Service, let’s get to know the Power BI
mobile app.

Power BI mobile app
The Power BI mobile app is used to consume Power BI reports and dashboards, explore data, and
interact with platform users.

To get started, download the Power BI mobile app on your Android or iOS phone, or your Windows
computer. You can find all these versions at https://powerbi.microsoft.com/en-us/
downloads/.

Open the app and sign in with your Power BI username and password.

Then, click on Workspaces from the left-hand side menu and then on My Workspace. On this page,
you should find your PacktSampleReport report and PacktDashboard. Open PacktDashboard to
begin exploring the dashboard, as follows:

Figure 13.11 – PacktDashboard in the Power BI mobile app

https://powerbi.microsoft.com/en-us/downloads/
https://powerbi.microsoft.com/en-us/downloads/

Power BI mobile app 241

Here, you can explore the top menu options. There are several cool features here, such as the Comments
button, which allows Power BI users to collaborate and discuss.

This simple dashboard only contains one chart, but you can create dashboards with multiple visuals
from different reports, consolidating the most important information on a single page.

To return to our report, click on the bar chart. Here, you can access the chart’s details and explore
your filter options. You’ll also find a button in the top menu called Open Report, which will direct
you to the PacktSampleReport report.

Click on it to access the report through the app:

Figure 13.12 – PackSampleReport in the Power BI mobile app

With that, we’ve explored our Azure Synapse Analytics SQL Pool database using Power BI and
consumed it in reports and dashboards using the Power BI mobile app.

Working with Power BI242

Microsoft has specific certifications for Power BI professionals, such as PL-300 – Microsoft Power BI
Data Analytics, so the questions that are often found in the DP-900 test are simple and related to the
topics covered in this chapter.

Now, let’s review everything we’ve learned in this chapter.

Summary
Power BI is a key part of any data analytics project in Azure. For this reason, some basic questions
about the service structure have been added to the DP-900 test.

It is important to remember the different modules mentioned in this chapter, namely Power BI
Desktop, Power BI Service, the Power BI mobile app, Power BI Report Server, Power BI Premium, and
Power BI Embedded.

In the next chapter, we will review all the knowledge you’ve acquired in this book in terms of commented
questions and answers so that you are even more prepared to pass the DP-900 exam and create data
projects in Azure.

But first, let’s consider some sample questions and answers related to Power BI.

Sample questions and answers
Try answering the following questions to test your knowledge of this chapter’s content:

1.	 Which of the following advantages doesn’t have a direct connection to Power BI’s interactive reports?

A.	 AI-powered augmented analytics

B.	 Easy data preparation and modeling

C.	 Advanced analytics with knowledge of MS Office

D.	 Ideal for large and medium-sized businesses with the necessary human resources to
support data analytics

2.	 Consider the following statements:

	� S1: Explore and collaborate with the reposts in the Power BI mobile app

	� S2: Connect and ingest data in Power BI Desktop

	� S3: Share dashboards with other users in the organization

	� S4: Create a report and publish it to Power BI Service

Sample questions and answers 243

Which of the following iterations of the aforementioned sentences best captures the typical
flow of events in Power BI?

A.	 S1-S2-S4-S3

B.	 S2-S1-S3-S4

C.	 S2-S4-S3-S1

D.	 S2-S3-S1-S4

3.	 Which two scenarios are the best for Power BI paginated reports? Each correct response offers
a full resolution:

A.	 A report that has a table visual with the ability to print all the data in the table

B.	 A report with a repeatable header and footer

C.	 A report that has a table visual with the ability to see all the data in the table

D.	 A report that uses only Power BI visuals

4.	 Which activity can be performed entirely by using Power BI Service?

A.	 Data acquisition

B.	 Report and dashboard creation

C.	 Data modeling

D.	 Data preparation

5.	 For which reason should you use a Power BI dashboard?

A.	 To develop a new type of report

B.	 To interact with the data

C.	 To consolidate information in a single page, with visuals from one or multiple reports

D.	 To share the report with other data users in the organization

Answer key

1-D 2-C 3-A, B 4-B 5-C

14
DP-900 Mock Exam

Before we start, congratulations on completing all the chapters! Our learning journey started with
storage concepts, databases, and data analytics, through key Azure services to implement these
concepts, and you’re now ready for the DP-900 certification test.

The DP-900 – Microsoft Azure Data Fundamentals exam will provide you with an official Microsoft
certification that is intended for professionals who want to certify that they have knowledge of
fundamental data concepts and the associated Microsoft Azure data services.

After this fundamental certification, you can specialize in Azure role-based certifications such as
Azure Database Administrator Associate or Azure Data Engineer Associate. To be prepared for these
certifications, I suggest you gain experience in implementing projects.

To prepare for any test, we should have a full review of the topics, but it’s very important to be prepared
to be tested in an exam as well. That’s what we’re going to do in this chapter: simulate a real exam.

Practice test – questions
This exam simulation is based on 20 questions, so it’ll be fast. First, try to answer the questions without
looking at the explanations. When you complete the questionnaire, you can start evaluating the answers
and explanations. After evaluating your score, read the explanations carefully, and you can access the
reference documentation of issues that you might have missed where you marked incorrect answers.

DP-900 Mock Exam246

Core data concepts

1.	 Select the correct statement:

A.	 () Extract, transform, and load (ETL) can limit the amount of sensitive data that is
transferred to target systems

B.	 () Extract, load, and transform (ELT) reduces the amount of time needed to copy
substantial amounts of data to the target systems

C.	 () Extract, load, and transform (ELT) transforms data utilizing a computational resource
that is not dependent on the source or target systems

D.	 () Extract, transform, and load (ETL) transforms data utilizing a computational resource
that is not dependent on the source or target systems

2.	 Select an option that best completes the following statement:

The cloud benefit of increasing or decreasing resources as needed is called _____________.

A.	 () Scaling

B.	 () Networking

C.	 () Computing

D.	 () Provisioning

3.	 Structured data is represented in the format of _____________.

A.	 () Azure Data Explorer

B.	 () Document databases

C.	 () JSON

D.	 () Rows and columns in a table

4.	 A customer wants to implement a graph database. Select the best use case for this type of
database structure:

A.	 () Analytical databases

B.	 () Reporting

C.	 () Exploring complex relationships

D.	 () Transactional databases

Practice test – questions 247

5.	 What is the objective of data normalization?

A.	 () Compiling complex SQL queries for data exploration

B.	 () Ideal for storing documents in tables

C.	 () Better performance for transactional databases

D.	 () Minimizing the number of tables in a database

Relational data on Azure

Answer the following questions:

1.	 Select the best option to complete the following sentence:

_____________________ physically sorts the data in a table based on the values in a
specified column.

A.	 () A view

B.	 () A clustered index

C.	 () A stored procedure

D.	 () A non-clustered index

2.	 When moving an existing SQL Server on-premises solution, which PaaS service offers the
best compatibility?

A.	 () Azure SQL Database (single database)

B.	 () Azure SQL Database (elastic pool)

C.	 () Azure SQL Managed Instance

D.	 () Azure SQL Virtual Machines

3.	 Select the true statement about Azure SQL Managed Instance:

A.	 () It has a planned maintenance window

B.	 () You must purchase a SQL Server license

C.	 () It can only support one database

D.	 () You can connect to the operating system of the server

DP-900 Mock Exam248

4.	 Which of the following claims best describes a relational database?

A.	 () A table’s columns must all be of the same data type

B.	 () Stores and organizes data points with defined relationships for fast access

C.	 () The same table’s rows can have various column combinations

D.	 () A table’s rows can store documents

5.	 Which SQL statement is used to query rows and return data from tables?

A.	 () QUERY

B.	 () CREATE

C.	 () SELECT

D.	 () INSERT

Non-relational data on Azure

Answer the following questions:

1.	 Which of the following options best completes this sentence:

On Azure Table storage, you need to optimize the data retrieval. You should use ________________
as query criteria.

A.	 () Properties

B.	 () Row keys

C.	 () Partition and row keys

D.	 () Partition keys

2.	 Which of the following Azure data service options is recommended to implement a new
graph database?

A.	 () Azure Data Lake

B.	 () Azure Blob Storage

C.	 () Azure Table

D.	 () Azure Cosmos DB

Practice test – questions 249

3.	 Complete the sentence. Using ____________, I can provision Azure storage using a JSON file:

A.	 () Azure Resource Manager (ARM)

B.	 () The Azure portal

C.	 () The Azure command-line interface (CLI)

D.	 () Azure PowerShell

4.	 You are developing a solution with Azure Cosmos DB, and after your development, you want
to delete all resources. What’s the sequence of steps to perform this deletion?

	� 1—Access the resource group where Azure Cosmos DB was implemented

	� 2—Using the Azure portal, search for resource groups

	� 3—Type the resource group name and click on Delete

	� 4—Click on Delete Resource Group

A.	 () S1 – S2 – S3 – S4

B.	 () S2 – S1 – S3 – S4

C.	 () S1 – S3 – S4 – S2

D.	 () S2 – S1 – S4 – S3

5.	 You want to implement an Apache Spark cluster for data science. Which Azure services can
be used for this scenario?

A.	 () Azure Synapse Analytics

B.	 () Azure Databricks

C.	 () Azure HDInsight

D.	 () Azure SQL Database

Modern data warehouse analytics on Azure

Answer the following questions:

1.	 What’s the language used in Azure Synapse Data Explorer to explore data?

A.	 () SQL

B.	 () Java

C.	 () KQL

D.	 () T-SQL

DP-900 Mock Exam250

2.	 Select the use case for implementing a data warehouse:

A.	 () Printing a receipt of a sales order

B.	 () Searching for the sales order status

C.	 () Recording sales transactions

D.	 () Exploring sales from last year

3.	 Select an answer that correctly completes the following sentence:

The library that provides data stream processing for Apache Spark processes in Azure Databricks
and Azure Synapse Analytics is called _____________.

A.	 () Spark Structured Streaming library

B.	 () Spark Unstructured Streaming library

C.	 () Spark Streaming library

D.	 () Apache Spark does not support data stream processing

4.	 You are using Azure Data Factory, implementing data ingestion from Azure SQL Database.
Which resources should you use for this connection? You can choose more than one answer
for a complete solution.

A.	 () Dataset

B.	 () Copy data activity

C.	 () Linked service

D.	 () Azure Databricks notebook

5.	 You are using Power BI paginated reports. Which of these use cases can be implemented using
Power BI paginated reports?

A.	 () Reports with a repeatable header and footer

B.	 () Reports formatted for printing

C.	 () Reports with custom dashboard visuals

D.	 () Reports with the ability to print the entire data in a table

Practice test – answers and explanations
Now that you have marked up your answers to the questions, in the following sections, we’ll discuss
how we can eliminate incorrect choices and mark the correct answer for these questions.

Practice test – answers and explanations 251

Core data concepts

1.	 Select the correct statement:

A.	 () Extract, transform, and load (ETL) can limit the amount of sensitive data that is
transferred to target system.

B.	 () Extract, load, and transform (ELT) reduces the amount of time needed to copy
substantial amounts of data to the target system.

C.	 (X) Extract, load, and transform (ELT) transforms data utilizing a computational resource
that is not dependent on the source or target system.

D.	 () Extract, transform, and load (ETL) transforms data utilizing a computational resource
that is not dependent on the source or target systems

Explanation

•	 Option A is incorrect because, in ETL processes, it is often not evaluated whether the data
is sensitive or not. For this analysis, it is interesting to add other tools—such as Microsoft
Purview, for example.

•	 Option B is incorrect because ELT does not reduce the time to copy data between systems.
Copy time varies with the total size and complexity of the data type being processed in ELT.

•	 Option C is correct because the main feature of the ELT process is that the data is first extracted
from the data source, then uploaded to a data lake, and then transformed using modern data
warehousing and big data techniques.

•	 Option D is incorrect because, in ETL processes, the transformation of the data occurs at the
runtime of the data ingestion process—that is, the data is already copied under transformation
to the analytical environment.

Here is a link to the reference documentation:

https://docs.microsoft.com/en-us/azure/architecture/data-guide/
relational-data/etl

2.	 Select an option that best completes the following statement:

The cloud benefit of increasing or decreasing resources as needed is called _____________.

A.	 (X) Scaling

B.	 () Networking

C.	 () Computing

D.	 () Provisioning

https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl

https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl

DP-900 Mock Exam252

Explanation

•	 Option A is correct as it is the scalability of the cloud that allows us to increase or decrease
our resources as needed

•	 Option B is incorrect because networking is the connectivity capability of the cloud

•	 Option C is incorrect because computing is what is provided by the cloud for the execution
of processes

•	 Option D is incorrect because provisioning is the process we do to instantiate a new cloud service

Here is a link to the reference documentation:

https://docs.microsoft.com/learn/modules/explore-provision-deploy-
relational-database-offerings-azure/2-describe-provision-relational-
data-services

3.	 Structured data is represented in the format of _____________.

A.	 () Azure Data Explorer

B.	 () Document databases

C.	 () JSON

D.	 (X) Rows and columns in a table

Explanation

•	 Option A is incorrect because Azure Data Explorer is a semi-structured Azure data processing tool

•	 Option B is incorrect because document databases generally store semi-structured data

•	 Option C is incorrect because it is a document type widely used for semi-structured data storage

•	 Option D is correct because structured data is typically based on tables consisting of rows
and columns

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/training/modules/explore-relational-
data-offerings/2-understand-relational-data

4.	 A customer wants to implement a graph database. Select the best use case for this type of
database structure:

A.	 () Analytical databases

B.	 () Reporting

C.	 (X) Exploring complex relationships

D.	 () Transactional databases

https://docs.microsoft.com/learn/modules/explore-provision-deploy-relational-database-offerings-azure/2-describe-provision-relational-data-services

https://docs.microsoft.com/learn/modules/explore-provision-deploy-relational-database-offerings-azure/2-describe-provision-relational-data-services

https://docs.microsoft.com/learn/modules/explore-provision-deploy-relational-database-offerings-azure/2-describe-provision-relational-data-services

https://learn.microsoft.com/en-us/training/modules/explore-relational-data-offerings/2-understand-relational-data

https://learn.microsoft.com/en-us/training/modules/explore-relational-data-offerings/2-understand-relational-data

Practice test – answers and explanations 253

Explanation

•	 Option A is incorrect because analytical databases have a different structure than graph databases,
such as data lakes and parallelized data processing tools

•	 Option B is incorrect because reporting is the practice of creating reports connected to the
database, and not necessarily related to a graph database

•	 Option C is correct because graph databases are designed to define complex relationships and
explore those relationships both by queries and in a visual way

•	 Option D is incorrect because transactional databases are databases designed to support business
application operations, not necessarily with complex relationships

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-
introduction

5.	 What is the objective of data normalization?

A.	 () Compiling complex SQL queries for data exploration

B.	 () Ideal for storing documents in tables

C.	 (X) Better performance for transactional databases

D.	 () Minimizing the number of tables in a database

Explanation

•	 Option A is incorrect because the queries must instead connect the tables that are normalized,
but in general, this implementation brings greater organization to the database

•	 Option B is incorrect because normalization is not related to the data types of the tables

•	 Option C is correct because normalization processes can optimize database performance for
transactional workloads

•	 Option D is incorrect because normalization in most cases increases the number of tables in
the database

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/training/modules/explore-relational-
data-offerings/3-normalization

https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction

https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction

https://learn.microsoft.com/en-us/training/modules/explore-relational-data-offerings/3-normalization

https://learn.microsoft.com/en-us/training/modules/explore-relational-data-offerings/3-normalization

DP-900 Mock Exam254

Relational data on Azure

1.	 Select the best option to complete the following sentence:

_____________________ physically sorts the data in a table based on the values in a
specified column

A.	 () A view

B.	 (X) A clustered index

C.	 () A stored procedure

D.	 () A non-clustered index

Explanation

•	 Option A is incorrect because a view is the materialization of the result of a query and the way
it is returned, without optimization in the queries of the original table

•	 Option B is correct because, as we explored in Chapter 3, Working with Relational Data, the
clustered index in a relational database creates a data access control table from a key column,
causing access to that data to be optimized

•	 Option C is incorrect because a stored procedure is the storage of a SQL instruction block
that can be triggered by other objects in the database and by the application connected to this
database, but does not physically materialize a table

•	 Option D is incorrect because a non-clustered index has a separate structure from the data rows
that contains a pointer to the data row as a key value

Here is a link to the reference documentation:

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/
clustered-and-nonclustered-indexes-described?view=sql-server-ver12

2.	 When moving an existing SQL Server on-premises solution, which PaaS service offers the
best compatibility?

A.	 () Azure SQL Database (single database)

B.	 () Azure SQL Database (elastic pool)

C.	 (X) Azure SQL Managed Instance

D.	 () Azure SQL Virtual Machines

Explanation

•	 Options A and B are incorrect because Azure SQL Database is intended for the development
of new cloud-native applications or applications that have already been developed in Azure

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15

Practice test – answers and explanations 255

•	 Option C is correct because Azure SQL Managed Instance was designed exactly for the purpose
of migrating existing databases in SQL Server (versions above SQL Server 2005), maintaining
all compatibility to migrate those databases to a PaaS service

•	 Option D is incorrect because despite being an option, Azure SQL Virtual Machines has fewer
benefits than Azure SQL Managed Instance because it is an IaaS migration option

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/
sql-managed-instance-paas-overview?view=azuresq3

3.	 Select the true statement about Azure SQL Managed Instance:

A.	 (X) It has a planned maintenance window

B.	 () You must purchase a SQL Server license

C.	 () It can only support one database

D.	 () You can connect to the operating system of the server

Explanation

•	 Option A is correct because Azure SQL Managed Instance has a planned maintenance window
page that can be accessed by the Azure portal and configured to have less of an impact on services

•	 Option B is incorrect because to use Azure SQL Database, we have the option of taking an
existing SQL Server license in an enterprise agreement (a Hub benefit), but this action is not
mandatory, and we can activate the service and use it as needed by Azure

•	 Option C is incorrect because Azure SQL Managed Instance supports multiple databases

•	 Option D is incorrect because it is not possible to connect to the operating system of the server

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/azure-sql/database/maintenance-
window?view=azuresq4

4.	 Which of the following claims best describes a relational database?

A.	 () A table’s columns must all be of the same data type

B.	 (X) Stores and organizes data points with defined relationships for fast access

C.	 () The same table’s rows can have various column combinations

D.	 () A table’s rows can store documents

https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/sql-managed-instance-paas-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/sql-managed-instance-paas-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/maintenance-window?view=azuresql

https://learn.microsoft.com/en-us/azure/azure-sql/database/maintenance-window?view=azuresql

DP-900 Mock Exam256

Explanation

•	 Option A is incorrect because columns from a relational database table do not have to have
the same data type.

•	 Option B is correct because a relational database stores and organizes its data considering
the relationships between the predefined tables. This behavior causes queries to be optimized.

•	 Option C is incorrect because you do not have to have equal rows between tables for the database
to be relational.

•	 Option D is incorrect because in some relational databases it is possible to store documents as
binaries, but this is not a characteristic that best describes a relational database.

Here is a link to the reference documentation:

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/
what-is-a-relational-databas5

5.	 Which SQL statement is used to query rows and return data from tables?

A.	 () QUERY

B.	 () CREATE

C.	 (X) SELECT

D.	 () INSERT

Explanation

•	 Option A is incorrect because there is no SQL statement called QUERY

•	 Option B is incorrect because CREATE is used to create objects in the database and not
perform queries

•	 Option C is correct because SELECT is used to create queries that return rows from database tables

•	 Option D is incorrect because INSERT is used to insert new rows into tables in the database
and not perform queries

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-
sql?view=sql-server-ver16

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-relational-database

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-relational-database

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-server-ver16

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-server-ver16

Practice test – answers and explanations 257

Non-relational data on Azure

1.	 Which of the following options best completes this sentence:

On Azure Table storage, you need to optimize the data retrieval. You should use ________________
as query criteria.

A.	 () Properties

B.	 () Row keys

C.	 (X) Partition and row keys

D.	 () Partition keys

Explanation

•	 Option A is incorrect because while working on Azure Table storage, properties may not
optimize data retrieval

•	 Option B is incorrect because, in addition to row keys, we also have partition keys in Azure
Table storage to optimize queries

•	 Option C is correct because it is complete with the top two features for query optimization to
Azure Table storage: partition keys and row keys

•	 Option D is incorrect because, in addition to partition keys, we also have row keys

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/training/modules/explore-provision-
deploy-non-relational-data-services-azure/5-azure-tables

2.	 Which of the following Azure data service options is recommended to implement a new
graph database?

A.	 () Azure Data Lake

B.	 () Azure Blob Storage

C.	 () Azure Table

D.	 (X) Azure Cosmos DB

Explanation

•	 Options A, B, and C are incorrect because these services do not support graph databases

•	 Option D is correct because Azure Cosmos DB has the Gremlin API, which supports the
assembly of graph databases, and even though it is not the only graph database option in Azure,
it is recommended for new projects

https://learn.microsoft.com/en-us/training/modules/explore-provision-deploy-non-relational-data-services-azure/5-azure-tables

https://learn.microsoft.com/en-us/training/modules/explore-provision-deploy-non-relational-data-services-azure/5-azure-tables

DP-900 Mock Exam258

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-
introduction

3.	 Complete the sentence. Using ____________, I can provision Azure storage using a JSON file:

A.	 (X) Azure Resource Manager (ARM)

B.	 () The Azure portal

C.	 () The Azure command-line interface (CLI)

D.	 () Azure PowerShell

Explanation

•	 Option A is correct because ARM templates, based on JSON files, are designed for automation
in the service provisioning process in Azure

•	 Options B, C, and D are incorrect because the Azure portal, the Azure CLI, and Azure PowerShell
can provision Azure storage but do not use a JSON file as a reference for this creation.

Here is a link to the reference documentation:

https://docs.microsoft.com/training/modules/explore-provision-
deploy-non-relational-data-services-azure/2-describe-provision-non-
relational-data-services

4.	 You are developing a solution with Azure Cosmos DB, and after your development, you want
to delete all resources. What’s the sequence of steps to perform this deletion?

	� S1—Access the resource group where Azure Cosmos DB was implemented

	� S2—Using the Azure portal, search for resource groups

	� S3—Type the resource group name and click on Delete

	� S4—Click on Delete Resource Group

A.	 () S1 – S2 – S3 – S4

B.	 () S2 – S1 – S3 – S4

C.	 () S1 – S3 – S4 – S2

D.	 (X) S2 – S1 – S4 – S3

https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://learn.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.microsoft.com/training/modules/explore-provision-deploy-non-relational-data-services-azure/2-describe-provision-non-relational-data-services
https://docs.microsoft.com/training/modules/explore-provision-deploy-non-relational-data-services-azure/2-describe-provision-non-relational-data-services
https://docs.microsoft.com/training/modules/explore-provision-deploy-non-relational-data-services-azure/2-describe-provision-non-relational-data-services

Practice test – answers and explanations 259

Explanation

Option D is correct because the correct sequence starts, and in the Azure portal, we search for the
Resource Group Services category so that we can have a full list of resource groups. After that, it is
necessary to access the resource group in question and then click Delete Resource Group. To follow,
we must enter the name of the resource group and confirm.

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/azure-resource-manager/
management/delete-resource-group?tabs=azure-powershell

5.	 You want to implement an Apache Spark cluster for data science. Which Azure services can
be used for this scenario?

A.	 (X) Azure Synapse Analytics

B.	 (X) Azure Databricks

C.	 (X) Azure HDInsight

D.	 () Azure SQL Database

Explanation

•	 Among these options, we found three correct ones for implementing an Apache Spark cluster.
Azure Synapse Analytics has a Synapse Spark pool, Azure Databricks is Spark-based, and Azure
HDInsight has cluster options with Spark.

•	 Option D is incorrect because Azure SQL Database does not support Spark clusters.

Here are a few links to the reference documentation:

•	 https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/
apache-spark-overview

•	 https://learn.microsoft.com/en-us/azure/databricks/getting-
started/spark/

•	 https://learn.microsoft.com/en-us/azure/hdinsight/spark/apache-
spark-overview

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/delete-resource-group?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/delete-resource-group?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://learn.microsoft.com/en-us/azure/databricks/getting-started/spark/
https://learn.microsoft.com/en-us/azure/databricks/getting-started/spark/
https://learn.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
https://learn.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview

DP-900 Mock Exam260

Modern data warehouse analytics on Azure

1.	 What’s the language used in Azure Synapse Data Explorer to explore data?

A.	 () SQL

B.	 () Java

C.	 (X) KQL

D.	 () T-SQL

Explanation

•	 Option A is incorrect. SQL is a standard language for databases, but some use cases have
specialized technologies. That’s why Data Explorer has its own type of language.

•	 Option B is incorrect. Java is not supported in Azure Synapse Data Explorer.

•	 Option C is correct. The full name of the Data Explorer-owned language is Kusto Query
Language (KQL), and it’s optimized for fast exploration of telemetry- and timestamp-related data.

•	 Option D is incorrect. T-SQL is not supported in Azure Synapse Data Explorer.

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/training/modules/explore-
fundamentals-stream-processing/8-data-explorer

2.	 Select the use case for implementing a data warehouse:

A.	 () Printing a receipt of a sales order

B.	 () Searching for the sales order status

C.	 () Recording sales transactions

D.	 (X) Exploring sales from last year

Explanation

•	 Option A is incorrect because a transactional database is ideal for storing sales order data for
printing receipts

•	 Option B is incorrect because a data warehouse, despite being a data query engine, has as its main
objective aggregating information from a period and providing explorations about that data

•	 Option C is incorrect because a transactional database is ideal for storing record sales transactions

•	 Option D is correct because to perform last year’s sales exploration, you will need to aggregate
a large volume of transactions, which makes this workload ideal for a data warehouse

https://learn.microsoft.com/en-us/training/modules/explore-fundamentals-stream-processing/8-data-explorer
https://learn.microsoft.com/en-us/training/modules/explore-fundamentals-stream-processing/8-data-explorer

Practice test – answers and explanations 261

Here is a link to the reference documentation:

https://docs.microsoft.com/learn/modules/examine-components-of-
modern-data-warehouse/2-describe-warehousing

3.	 Select an answer that correctly completes the following sentence:

The library that provides data stream processing for Apache Spark processes in Azure Databricks
and Azure Synapse Analytics is called _____________.

A.	 (X) Spark Structured Streaming library

B.	 () Spark Unstructured Streaming library

C.	 () Spark Streaming library

D.	 () Apache Spark does not support data stream processing

Explanation

•	 Option A is the correct name of the data stream library found in the Apache Spark open
source project.

•	 Options B, C, and D are incorrect names.

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/training/modules/explore-
fundamentals-stream-processing/6-spark-streaming

4.	 You are using Azure Data Factory, implementing data ingestion from Azure SQL Database.
Which resources should you use for this connection? You can choose more than one answer
for a complete solution.

A.	 () Dataset

B.	 (X) Copy data activity

C.	 (X) Linked service

D.	 () Azure Databricks notebook

Explanation

•	 Option A is incorrect because a dataset is the result of some data query, not necessarily an
Azure Data Factory resource.

•	 Options B and C are correct answers because to implement a copy of data in Azure Data
Factory, it is necessary to create a Copy data activity, and when making the source connection
it is necessary to create a linked service, as we explored in the hands-on exercise in Chapter 12,
Provisioning and Configuring Large-Scale Data Analytics in Azure.

https://docs.microsoft.com/learn/modules/examine-components-of-modern-data-warehouse/2-describe-warehousing
https://docs.microsoft.com/learn/modules/examine-components-of-modern-data-warehouse/2-describe-warehousing
https://learn.microsoft.com/en-us/training/modules/explore-fundamentals-stream-processing/6-spark-streaming
https://learn.microsoft.com/en-us/training/modules/explore-fundamentals-stream-processing/6-spark-streaming

DP-900 Mock Exam262

•	 Option D is not the best option. Azure Databricks can copy data but does not use the capabilities
of Azure Data Factory, instead creating a connection customized “as code” in a notebook in
Azure Databricks.

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/azure/data-factory/author-
visually?tabs=data-factory

5.	 You are using Power BI paginated reports. Which of these use cases can be implemented using
Power BI paginated reports?

A.	 (X) Reports with a repeatable header and footer

B.	 (X) Reports formatted for printing

C.	 () Reports with custom dashboard visuals

D.	 (X) Reports with the ability to print the entire data in a visual table

Explanation

•	 Options A, B, and D are correct. Power BI paginated reports are designed for print-ready
reports, with the possibility of a repeatable header and footer, and including the entire data
from a visual table in the print operation.

•	 Option C is incorrect because Power BI paginated reports are not designed for dashboard visuals.

Here is a link to the reference documentation:

https://learn.microsoft.com/en-us/power-bi/paginated-reports/paginated-
reports-report-builder-power-bi

Summary
As you can see, the DP-900 exam questions require an overview of data concepts and Azure data
services exploration. Now that you’ve gone through the concepts, performed the exploration exercises
in the Azure portal, and attempted a simulation test, you’re ready to take the exam and ace it!

The data market is growing in a very accelerated way, with high demand for skilled professionals
in all countries. This is the time to improve your knowledge, get good certifications, and build a
successful career.

This book was conceived and built with great affection and dedication, and I’m sure you’re prepared
to start your data projects with Azure.

https://learn.microsoft.com/en-us/azure/data-factory/author-visually?tabs=data-factory
https://learn.microsoft.com/en-us/azure/data-factory/author-visually?tabs=data-factory
https://learn.microsoft.com/en-us/power-bi/paginated-reports/paginated-reports-report-builder-power-bi
https://learn.microsoft.com/en-us/power-bi/paginated-reports/paginated-reports-report-builder-power-bi

Summary 263

You can count on me on this journey. You can connect with me on my LinkedIn profile (https://www.
linkedin.com/in/marcelocml/) and follow my videos on my YouTube channel (https://
www.youtube.com/c/DicasDeDados).

I would like to see you certified in Azure Data Services soon. All the best!

https://www.linkedin.com/in/marcelocml/
https://www.linkedin.com/in/marcelocml/
https://www.youtube.com/c/DicasDeDados
https://www.youtube.com/c/DicasDeDados

Index

Symbols
360-degree customer view case study 65, 66

consolidated view, of customer data 66

A
access control lists (ACLs) 172
ACID properties

atomicity 15
consistency 15
durability 16
isolation 15

American National Standards
Institute (ANSI) 40

analytical database 9, 71-73
data ingestion 10
data processing 10
data query 10
example 10, 11

analytical data model 73, 77
dimensions 78, 79
exploring 77, 78
facts 78

analytical data store 73
data lake 76
data warehouse 76
exploring 76
hybrid approaches 77

analytical workload 17, 18
Apache Hadoop 180
Apache HBase 180
Apache Interactive Query 180
Apache Kafka 180
Apache Spark 180
Apache Spark Pool 188
Apache Spark Stream 193
Apache Storm 180
append blob 148
application programming

interface (API) 193
AzCopy 150
Azure

SQL Server databases 88
Azure Blob storage 57, 149

access levels 149
append blob 148
block blob 148
page blob 148

Index266

Azure Cognitive Services 181
Azure Computer Vision 57
Azure Speech service 57

Azure Command-Line Interface (CLI) 30
Azure Cosmos DB 124, 152, 153

formats 153
Azure Cosmos DB, provisioning 160, 161

backup policy 163
basic settings 162
encryption 163
Global Distribution 162
networking 163
tags 163-166

Azure Database, for MariaDB 97
features 97

Azure Database, for MySQL 93
Backups feature 119
features 94
Flexible Server 94
MySQL Community Edition 93
Single Server 94

Azure Database for PostgreSQL 95, 124
connecting to 138-140
deployment options 96
Flexible Server 96
Hyperscale (Citus) 96
querying 140
relational data, querying in 137
Single Server 96

Azure databases
connection issues, causes 129

Azure Databricks 184
architecture 185
features 185

Azure Data Explorer 193
Azure Data Factory 74, 183
Azure Data Lake

exploring 208, 209

Azure Data Lake Storage Gen2 183
Azure Data Lake Store Gen2 181
Azure data services, for modern

data warehouse 182
Azure Databricks 184, 185
Azure Data Factory 183
Azure Data Lake Storage Gen2 183
Azure Synapse Analytics 183-186
data ingestion 182, 183
data preparation 182-184
data storage 183

Azure Data Studio 28, 29, 90, 91
Azure dedicated SQL pool 211-215
Azure Event Hubs 74, 192
Azure File Sync 150
Azure HDInsight 180

benefits 180
Azure Integration Runtime

(Auto-resolve) 203
Azure IoT Hub 74
Azure Logic Apps 74
Azure Machine Learning 222, 223
Azure non-relational data stores

Azure Blob storage, exploring 148, 149
Azure Data Lake Storage Gen2,

configuring 149, 150
Azure Files, exploring 150
Azure Table storage, exploring 151, 152
exploring 148

Azure NoSQL databases
Azure Cosmos DB APIs 153, 154
Azure Cosmos DB, exploring 153
Cassandra API 155, 156
Core (SQL) API 154
Cosmos DB Table API 155
exploring 152
Gremlin API 156, 157
MongoDB API 154, 155

Index 267

Azure portal 30
Azure relational database services

Azure Database for PostgreSQL and
MySQL, configuring 119, 120

Azure Database for PostgreSQL and
MySQL, provisioning 110-114

Azure SQL Database, configuring 115-118
Azure SQL Database, provisioning 102-109
configuring 114
provisioning 102

Azure serverless SQL pool 209, 210
Azure Spark pools 216-220
Azure SQL Database 89, 124

advanced threat prevention 90
advantages 90, 98, 99
anomaly detection 90
database auditing logs 90
data, inserting into 133
data, selecting from 134-136
data types 132
disadvantages 99
elastic pool 89, 90
high availability 90
point-in-time restore 90
relational data, querying in 124-128
scalability 90
single database 89
table schemas, altering 133
table schemas, deleting 133
tables, creating 130-132
use cases 98

Azure SQL Database firewall 129
Azure SQL Edge 93
Azure SQL Managed Instance 91

advantages 92
capability mode 91
SQL Server version 92

Azure-SSIS Integration Runtime 203
Azure storage account

provisioning 171-173
Azure Stream Analytics 74, 192

data flow 192
Azure Synapse Analytics 185

components 186
data 187
develop section 189
integrate section 189
manage section 191
monitor section 190
workspace 186

Azure Synapse Analytics Studio
data exploration example 31, 32

Azure Synapse Data Explorer 220, 221
Azure Synapse Data Explorer pools 193
Azure Synapse Link 220
Azure Synapse Pipelines 74, 183

exploring 202-208
Azure Synapse workspace

provisioning 198-201
Azure Table storage 152

partition key 152
row key 152

B
batch load 19

advantages 19
constraints 19

big data 76
evolution 179

Binary JSON (BSON) 154
binary large object (blob) 148
block blob 148
business intelligence (BI) 79, 178

Index268

C
Cassandra 59, 62
Cassandra API 155, 156
cluster specialization 180
column family database 60, 61

elements 61
example 62

commit process 15
Copy data activity feature 183
core data

terminologies 3
Core (SQL) API 154
Cosmos DB Table API 155
CRUD operations 15, 56
cube 77
customer relationship management

(CRM) database 4

D
data 4

inserting, into Azure SQL Database 133
selecting, from Azure SQL

Database 134-136
semi-structured data 4-6
storing, in cloud environment 7
structured data 4
unstructured data 6

data analyst 26
tasks 33
tools 33, 34

data analytics
case study 81
exploring 76

database administrator (DBA) 25
tasks 27
tools 28

database components 48
index 50
stored procedure 49
trigger 49
view 48

database management systems (DBMSs) 16
database schema 40
database solutions 8

analytical databases 9-11
transactional databases 8

Databricks Enterprise Security (DBES) 185
Data Control Language (DCL) 44
data cubes 73
Data Definition Language (DDL) 44, 45

instructions 45
data domain

case study 34, 35
data flow 27
workforces 25

data-driven culture case study 81, 82
data duplication challenge 13
data engineer 26

tasks 31
tools 31

Data Explorer Pool 188
data files

semi-structured 56
structured 56
unstructured 56

data ingestion 18, 71
batch load 19
batch processing 74
data streaming 20
processing 73
stream or real-time processing 74

data lake 71, 76
data lakehouse 76

Index 269

Data Lake Store
provisioning 171-173

data loading, practices 198
Azure Data Lake, exploring 208, 209
Azure dedicated SQL pool 211-215
Azure Machine Learning 222, 223
Azure serverless SQL pool 209, 210
Azure Spark pool 216-220
Azure Synapse Data Explorer 220, 221
Azure Synapse Link 220
Azure Synapse Pipelines, exploring 202-208
Azure Synapse workspace,

provisioning 198-201
Data Manipulation Language (DML) 44-46

instructions 46, 47
data mart 178
data modeling 79

example 80
data normalization 40

example 41, 42
data pipeline 71, 72

example 72
Data Query Language (DQL) 44-46

instructions 46, 47
data silos 65
data source connectors 74, 75
data storage

defining 11
data stream 192
data streaming 20

advantages 20
disadvantages 21
stock market example 20

Data Transaction Language (DTL) 44
data type

defining 11

data types, Azure SQL Database 132
reference link 132

data visualization 73
exploring 79, 80

data warehouse (DW) 76, 177
DBA’s tools 28

Azure Data Studio 28, 29
Azure portal 30
SQL Server Management Studio 29, 30

Delta Lake 77, 194
denormalized analytics databases 76
dimensions 73, 77, 78
dimension tables 78
distributed databases 16
document database 59, 60

benefits 59

E
elastic pool 89, 90
Enterprise Resource Planning (ERP) 4, 82
enterprise-scale business analytics 79
entity 40
Event Hubs 181
eventual consistency 16

illustration 17
extract, load, and transform

(ELT) 18, 72, 182, 202
extract, transform, and load

(ETL) 18, 72, 182, 202

F
fact 73
foreign key 42

Index270

G
graph database 62

edges 62
nodes 62
use cases 63

Graph format 56
Gremlin API 156, 157

H
Hadoop 76, 179

components 179
Hadoop Distributed File System

(HDFS) 172, 179
Hadoop PaaS service 180
HBase 62
hybrid transactional/analytical

processing (HTAP) 220

I
index 50

creating 50
Infrastructure as a Service (IaaS) 7
input and output (I/O) operations 152
International Organization for

Standardization (ISO) 42
Internet of Things (IoT) 59
IoT Hubs 181

J
JavaScript Object Notation (JSON) 4

K
key performance indicators (KPIs) 73
keyspace 60

column families 61
key value 78
key-value database, NoSQL databases 58

example 59
Kusto Query Language (KQL) 193

L
lake database 76

M
machine learning operations (MLOps) 222
mapping dataflows feature 183
massively parallel processing (MPP) 178
measures 77
modern data warehouse 181

Azure data services 182
Azure support 181
data types 181
data velocity 181
increased data volumes 181

MongoDB API 154, 155
Mongo Query Language (MQL) 154
multidimensional structure 77

N
network file system (NFS) 150
NewSQL 73
non-relational data

basic storage 57
characteristics 13-15, 55, 56, 64

Index 271

non-structured data 56
semi-structured data 57
types 56
use cases, identifying 64

non-relational data services
Azure Cosmos DB, configuring 167, 168
Azure Cosmos DB, provisioning 160, 161
provisioning 160

non-structured data 56
Optical Character Recognition (OCR) 56
Speech-to-Text (STT) 56

normalization 8, 40
NoSQL database case study

360-degree customer view 64-66
financial institution fraud detection 67

NoSQL databases
column family database 60-62
document database 59, 60
exploring 58
graph database 62, 63
key-value store 58, 59

O
object store 73
online analytical processing (OLAP) 9
online transaction processing (OLTP) 8

P
page blob 148
Platform as a Service (PaaS) 7, 87
Power BI 33, 228

building blocks 228
components 229
dashboard sample 34

Premium license 230
Pro license 229

Power BI App 229
Power BI Desktop 229, 230

connection, creating 234-236
exploring 231
Power BI file, creating 232, 233
report, publishing 236, 237

Power BI Embedded 230
Power BI mobile app 240, 241

download link 240
Power BI Premium licenses

per capacity 230
per user 230

Power BI Report Builder
reference link 230

Power BI Report Server 230
Power BI Service 229

dashboard, creating 238-240
exploring 238
URL 238

predefined schema 76
primary keys 42
profiles

owner 7
read-only 7
read/write 7

Q
queryable formatting 56

R
raw data 71, 77
real-time data analytics 192

Index272

relational Azure data services
exploring 87

relational data 39
case study 50-52
characteristics 12, 39
entity 40
querying, in Azure Database

for PostgreSQL 137
querying, in Azure SQL Database 124-128
relationships 40
structures, exploring 40
table 40

Relational Database Management
Systems (RDBMS) 42

relationships 40
result set 76
rollback process 15

S
sample Azure Cosmos DB database

creating 168-171
SELECT statement 51

results 51
results, after UPDATE 52

Self-hosted Integration Runtime 203
semi-structured data 4, 57

graph database example 6
key-value database example 6

server message block (SMB) 150
Service-Level Agreement (SLA) 88
snowflake schema 76
Software Development Kits (SDKs) 155
Spark 76
Spark Structured Streaming library 193

SQL command categories 45
Data Control Language (DCL) 44
Data Definition Language (DDL) 44
Data Manipulation Language (DML) 44
Data Query Language (DQL) 44
Data Transaction Language (DTL) 44

SQL database configuration page
access control 116
backups 118
security 119

SQL Dedicated Pool 187
SQL Server IaaS Agent extension

reference link 30
SQL Server IaaS Agent Registration 93
SQL Server Integration Services

(SSIS) 183, 203
SQL Serverless Pool 187
SQL Server Management Studio 29, 30
SQL Server, on virtual machines 92

advantages 92, 93
customizations 93

SQL Server Reporting Services 33
star schema 76
stored procedure 49

example 49
stream data ingestion 74
structured data 4
Structured Query Language

(SQL) 30, 42, 123, 124
advantages 43
command categories 44
disadvantages 43
multiple data views 43
portability 43
scalability 43
standardization 43

Synapse Analytics 31, 32, 124

Index 273

T
table 40
tables

creating, in Azure SQL Database 130-132
table schemas

altering, in Azure SQL Database 133
deleting, in Azure SQL Database 133

tabular schemas 76
TinkerPop 156
total cost of ownership (TCO) 178
traditional data warehouses

challenges 178
transactional database 8

e-commerce database 8
example 8
relational transactional database 9

transactional workload 15
database management systems (DBMSs) 16
eventual consistency 16, 17

trigger 49

U
unstructured data 6, 56

V
vertices 156
view 48

example 48
Virtual Network (VNet) 92

W
Webshoes case study 21, 22
Workbench

reference link 137

workforces, data domain 25
data analyst 26
Database Administrator (DBA) 25, 26
data engineer 26

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure Data Engineer Associate Certification Guide

Newton Alex

ISBN: 9781801816069

•	 Gain intermediate-level knowledge of Azure the data infrastructure

•	 Design and implement data lake solutions with batch and stream pipelines

•	 Identify the partition strategies available in Azure storage technologies

•	 Implement different table geometries in Azure Synapse Analytics

•	 Use the transformations available in T-SQL, Spark, and Azure Data Factory

•	 Use Azure Databricks or Synapse Spark to process data using Notebooks

•	 Design security using RBAC, ACL, encryption, data masking, and more

•	 Monitor and optimize data pipelines with debugging tips

https://www.packtpub.com/product/azure-data-engineer-associate-certification-guide/9781801816069?_ga=2.136011505.1177617369.1666872296-1795362088.1624354451

277Other Books You May Enjoy

Azure Data Engineering Cookbook - Second Edition

Nagaraj Venkatesan, Ahmad Osama

ISBN: 9781803246789

•	 Process data using Azure Databricks and Azure Synapse Analytics

•	 Perform data transformation using Azure Synapse data flows

•	 Perform common administrative tasks in Azure SQL Database

•	 Build effective Synapse SQL pools which can be consumed by Power BI

•	 Monitor Synapse SQL and Spark pools using Log Analytics

•	 Track data lineage using Microsoft Purview integration with pipelines

https://www.packtpub.com/product/azure-data-engineering-cookbook-second-edition/9781803246789

278

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Microsoft Certified Azure Data Fundamentals (Exam DP-900) Certification Guide,
we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-803-24063-6
https://packt.link/r/1-803-24063-6

279

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily!

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803240633

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803240633

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Core Data Concepts
	Chapter 1: Understanding the
Core Data Terminologies
	Understanding the core data concepts
	What is data?
	How is data stored in a modern cloud environment?

	Describing a data solution
	Transactional databases
	Analytical databases

	Defining the data type and proper storage
	Characteristics of relational and non-relational databases
	A transactional workload
	An analytical workload

	Understanding data ingestion
	Understanding batch load
	Understanding data streaming

	Case study
	Summary
	Sample questions and answers
	Answer key

	Chapter 2: Exploring the Roles and Responsibilities in
Data Domain
	Different workforces in a data domain
	Most common roles in a data domain
	Database Administrator
	Data engineer
	Data analyst

	Tasks and tools for database administration profiles
	Tasks of the DBA
	Tools for the DBA

	Tasks and tools for data engineer profiles
	Tasks of the data engineer
	Tools for the data engineer

	Tasks and tools for the data analyst
	Tasks of the data analyst
	Tools for the data analyst

	Case study
	Summary
	Sample questions and answers
	Answer key

	Chapter 3: Working with
Relational Data
	Exploring the characteristics of relational data
	Tables and entities
	Relationship between entities

	Exploring relational data structures
	Data normalization

	Introducing SQL
	Key advantages of SQL
	Key disadvantages of SQL
	Understanding the categories of SQL commands
	DDL
	DML and DQL

	Describing the database components
	Views
	Stored procedures
	Triggers
	Indexes

	Case study
	Summary
	Sample questions and answers
	Answer key

	Chapter 4: Working with
Non-Relational Data
	Exploring the characteristics of non-relational data
	Understanding the types of non-relational data
	Non-structured data
	Semi-structured data
	Non-relational data basic storage

	Exploring NoSQL databases
	What is a NoSQL database?
	Key-value store
	Document database
	Column family database
	Graph database

	Identifying non-relational database use cases
	Case study
	A 360-degree customer view
	Fraud detection – financial institutions

	Summary
	Sample questions and answers
	Answer key

	Chapter 5: Exploring Data
Analytics Concepts
	Exploring data ingestion and processing
	Data pipelines
	Data ingestion types
	Data source connectors

	Exploring the analytical data store
	Data warehouse
	Data lake
	Hybrid approaches

	Exploring an analytical data model
	Facts and dimensions

	Exploring data visualization
	Case study
	Data-driven culture

	Summary
	Sample questions and answers
	Answer key

	Part 2:
Relational Data in Azure
	Chapter 6: Integrating Relational
Data on Azure
	Exploring relational Azure data services
	Elastic pool

	Use cases
	Summary
	Sample questions and answers
	Answer key

	Chapter 7: Provisioning and Configuring Relational Database Services in Azure
	Technical requirements
	Provisioning relational Azure data services
	Provisioning Azure SQL Database
	Provisioning Azure Database for PostgreSQL and MySQL

	Configuring relational databases on Azure
	Configuring Azure SQL Database
	Configuring and managing Azure Database for PostgreSQL and MySQL

	Summary
	Sample questions and answers
	Answer key

	Chapter 8: Querying
Relational Data in Azure
	Technical requirements
	Introducing SQL on Azure
	Querying relational data in Azure SQL Database
	Common connection issues

	Querying relational data in Azure Database for PostgreSQL
	Connecting to Azure Database for PostgreSQL
	Querying Azure Database for PostgreSQL

	Summary
	Sample questions and answers
	Answer key

	Part 3:
Non-Relational Data in Azure
	Chapter 9: Exploring Non-Relational
Data Offerings in Azure
	Exploring Azure non-relational data stores
	Exploring Azure Blob storage
	Azure Data Lake Storage Gen2
	Exploring Azure Files
	Exploring Azure Table storage

	Exploring Azure NoSQL databases
	Exploring Azure Cosmos DB
	Azure Cosmos DB APIs
	Core (SQL) API
	MongoDB API
	Table API
	Cassandra API
	Gremlin API

	Summary
	Sample questions and answers
	Answer key

	Chapter 10: Provisioning and Configuring Non-Relational
Data Services in Azure
	Technical requirements
	Provisioning non-relational data services
	Provisioning Azure Cosmos DB
	Configuring Azure Cosmos DB

	Creating a sample Azure Cosmos DB database
	Provisioning an Azure storage account and Data Lake Storage
	Summary
	Sample questions and answers
	Answer key

	Part 4:
Analytics Workload on Azure
	Chapter 11: Components of a Modern Data Warehouse
	Describing modern data warehousing
	Challenges of traditional data warehouses
	The birth of big data
	Azure HDInsight
	Modern data warehouse
	Azure for the modern data warehouse

	Exploring Azure data services for modern data warehouses
	Data ingestion and preparation (ELT/ETL)
	Data storage – Azure Data Lake Storage Gen2
	Data ingestion – Azure Data Factory and Azure Synapse Analytics
	Data preparation – Azure Databricks
	Modern data warehouse – Azure Synapse Analytics

	Real-time data analytics – Azure Stream Analytics, Azure Synapse Data Explorer, and Spark streaming
	Azure Stream Analytics
	Azure Data Explorer and Azure Synapse Data Explorer pools
	Apache Spark Streaming
	Delta Lake

	Summary
	Sample questions and answers
	Answer key

	Chapter 12: Provisioning and Configuring Large-Scale
Data Analytics in Azure
	Technical requirements
	Understanding common practices for data loading
	Provisioning an Azure Synapse workspace
	Practicing data load
	Data storage and processing
	Azure serverless SQL pool
	Azure dedicated SQL pool
	Azure Spark pools
	Azure Synapse Link
	Azure Synapse Data Explorer
	Azure Machine Learning

	Summary
	Sample questions and answers
	Answer key

	Chapter 13: Working with Power BI
	Technical requirements
	Introducing Power BI
	The building blocks of Power BI
	Exploring Power BI Desktop
	Creating a Power BI file
	Creating a connection
	Publishing a report

	Exploring Power BI Service
	Creating a dashboard

	Power BI mobile app
	Summary
	Sample questions and answers
	Answer key

	Chapter 14: DP-900 Mock Exam
	Practice test – questions
	Core data concepts
	Relational data on Azure
	Non-relational data on Azure
	Modern data warehouse analytics on Azure

	Practice test – answers and explanations
	Core data concepts
	Relational data on Azure
	Non-relational data on Azure
	Modern data warehouse analytics on Azure

	Summary

	Index
	About Packt
	Other Books You May Enjoy

